2025届湖北省宜昌金东方高中高考数学必刷试卷含解析_第1页
2025届湖北省宜昌金东方高中高考数学必刷试卷含解析_第2页
2025届湖北省宜昌金东方高中高考数学必刷试卷含解析_第3页
2025届湖北省宜昌金东方高中高考数学必刷试卷含解析_第4页
2025届湖北省宜昌金东方高中高考数学必刷试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省宜昌金东方高中高考数学必刷试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若曲线在点处的切线方程为,则实数的取值为()A.-2 B.-1 C.1 D.22.设,则关于的方程所表示的曲线是()A.长轴在轴上的椭圆 B.长轴在轴上的椭圆C.实轴在轴上的双曲线 D.实轴在轴上的双曲线3.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为()(注:)A.1624 B.1024 C.1198 D.15604.若集合,,则A. B. C. D.5.已知向量,则向量在向量方向上的投影为()A. B. C. D.6.下图为一个正四面体的侧面展开图,为的中点,则在原正四面体中,直线与直线所成角的余弦值为()A. B.C. D.7.已知双曲线的一条渐近线方程为,,分别是双曲线C的左、右焦点,点P在双曲线C上,且,则()A.9 B.5 C.2或9 D.1或58.设,命题“存在,使方程有实根”的否定是()A.任意,使方程无实根B.任意,使方程有实根C.存在,使方程无实根D.存在,使方程有实根9.已知直线与直线则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.如图是一个算法流程图,则输出的结果是()A. B. C. D.11.展开式中x2的系数为()A.-1280 B.4864 C.-4864 D.128012.已知抛物线的焦点为,是抛物线上两个不同的点,若,则线段的中点到轴的距离为()A.5 B.3 C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.如图,在△ABC中,AB=4,D是AB的中点,E在边AC上,AE=2EC,CD与BE交于点O,若OB=OC,则△ABC面积的最大值为_______.14.已知向量,,若,则________.15.某校初三年级共有名女生,为了了解初三女生分钟“仰卧起坐”项目训练情况,统计了所有女生分钟“仰卧起坐”测试数据(单位:个),并绘制了如下频率分布直方图,则分钟至少能做到个仰卧起坐的初三女生有_____________个.16.设f(x)=etx(t>0),过点P(t,0)且平行于y轴的直线与曲线C:y=f(x)的交点为Q,曲线C过点Q的切线交x轴于点R,若S(1,f(1)),则△PRS的面积的最小值是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)若射线的极坐标方程为().设与相交于点,与相交于点,求.18.(12分)在中,角所对的边分别是,且.(1)求角的大小;(2)若,求边长.19.(12分)已知中,,,是上一点.(1)若,求的长;(2)若,,求的值.20.(12分)如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.(1)证明:平面PNB;(2)问棱PA上是否存在一点E,使平面DEM,求的值21.(12分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且过点.为椭圆的右焦点,为椭圆上关于原点对称的两点,连接分别交椭圆于两点.⑴求椭圆的标准方程;⑵若,求的值;⑶设直线,的斜率分别为,,是否存在实数,使得,若存在,求出的值;若不存在,请说明理由.22.(10分)心形线是由一个圆上的一个定点,当该圆在绕着与其相切且半径相同的另外一个圆周上滚动时,这个定点的轨迹,因其形状像心形而得名,在极坐标系中,方程()表示的曲线就是一条心形线,如图,以极轴所在的直线为轴,极点为坐标原点的直角坐标系中.已知曲线的参数方程为(为参数).(1)求曲线的极坐标方程;(2)若曲线与相交于、、三点,求线段的长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

求出函数的导数,利用切线方程通过f′(0),求解即可;【详解】f(x)的定义域为(﹣1,+∞),因为f′(x)a,曲线y=f(x)在点(0,f(0))处的切线方程为y=2x,可得1﹣a=2,解得a=﹣1,故选:B.【点睛】本题考查函数的导数的几何意义,切线方程的求法,考查计算能力.2、C【解析】

根据条件,方程.即,结合双曲线的标准方程的特征判断曲线的类型.【详解】解:∵k>1,∴1+k>0,k2-1>0,

方程,即,表示实轴在y轴上的双曲线,

故选C.【点睛】本题考查双曲线的标准方程的特征,依据条件把已知的曲线方程化为是关键.3、B【解析】

根据高阶等差数列的定义,求得等差数列的通项公式和前项和,利用累加法求得数列的通项公式,进而求得.【详解】依题意:1,4,8,14,23,36,54,……两两作差得:3,4,6,9,13,18,……两两作差得:1,2,3,4,5,……设该数列为,令,设的前项和为,又令,设的前项和为.易,,进而得,所以,则,所以,所以.故选:B【点睛】本小题主要考查新定义数列的理解和运用,考查累加法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.4、C【解析】

解一元次二次不等式得或,利用集合的交集运算求得.【详解】因为或,,所以,故选C.【点睛】本题考查集合的交运算,属于容易题.5、A【解析】

投影即为,利用数量积运算即可得到结论.【详解】设向量与向量的夹角为,由题意,得,,所以,向量在向量方向上的投影为.故选:A.【点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.6、C【解析】

将正四面体的展开图还原为空间几何体,三点重合,记作,取中点,连接,即为与直线所成的角,表示出三角形的三条边长,用余弦定理即可求得.【详解】将展开的正四面体折叠,可得原正四面体如下图所示,其中三点重合,记作:则为中点,取中点,连接,设正四面体的棱长均为,由中位线定理可得且,所以即为与直线所成的角,,由余弦定理可得,所以直线与直线所成角的余弦值为,故选:C.【点睛】本题考查了空间几何体中异面直线的夹角,将展开图折叠成空间几何体,余弦定理解三角形的应用,属于中档题.7、B【解析】

根据渐近线方程求得,再利用双曲线定义即可求得.【详解】由于,所以,又且,故选:B.【点睛】本题考查由渐近线方程求双曲线方程,涉及双曲线的定义,属基础题.8、A【解析】

只需将“存在”改成“任意”,有实根改成无实根即可.【详解】由特称命题的否定是全称命题,知“存在,使方程有实根”的否定是“任意,使方程无实根”.故选:A【点睛】本题考查含有一个量词的命题的否定,此类问题要注意在两个方面作出变化:1.量词,2.结论,是一道基础题.9、B【解析】

利用充分必要条件的定义可判断两个条件之间的关系.【详解】若,则,故或,当时,直线,直线,此时两条直线平行;当时,直线,直线,此时两条直线平行.所以当时,推不出,故“”是“”的不充分条件,当时,可以推出,故“”是“”的必要条件,故选:B.【点睛】本题考查两条直线的位置关系以及必要不充分条件的判断,前者应根据系数关系来考虑,后者依据两个条件之间的推出关系,本题属于中档题.10、A【解析】

执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案.【详解】由题意,执行上述的程序框图:第1次循环:满足判断条件,;第2次循环:满足判断条件,;第3次循环:满足判断条件,;不满足判断条件,输出计算结果,故选A.【点睛】本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题.11、A【解析】

根据二项式展开式的公式得到具体为:化简求值即可.【详解】根据二项式的展开式得到可以第一个括号里出项,第二个括号里出项,或者第一个括号里出,第二个括号里出,具体为:化简得到-1280x2故得到答案为:A.【点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.12、D【解析】

由抛物线方程可得焦点坐标及准线方程,由抛物线的定义可知,继而可求出,从而可求出的中点的横坐标,即为中点到轴的距离.【详解】解:由抛物线方程可知,,即,.设则,即,所以.所以线段的中点到轴的距离为.故选:D.【点睛】本题考查了抛物线的定义,考查了抛物线的方程.本题的关键是由抛物线的定义求得两点横坐标的和.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先根据点共线得到,从而得到O的轨迹为阿氏圆,结合三角形和三角形的面积关系可求.【详解】设B,O,E共线,则,解得,从而O为CD中点,故.在△BOD中,BD=2,,易知O的轨迹为阿氏圆,其半径,故.故答案为:.【点睛】本题主要考查三角形的面积问题,把所求面积进行转化是求解的关键,侧重考查数学运算的核心素养.14、10【解析】

根据垂直得到,代入计算得到答案.【详解】,则,解得,故,故.故答案为:.【点睛】本题考查了根据向量垂直求参数,向量模,意在考查学生的计算能力.15、【解析】

根据数据先求出,再求出分钟至少能做到个仰卧起坐的初三女生人数即可.【详解】解:,.则分钟至少能做到个仰卧起坐的初三女生人数为.故答案为:.【点睛】本题主要考查频率分布直方图,属于基础题.16、【解析】

计算R(t,0),PR=t﹣(t),△PRS的面积为S,导数S′,由S′=0得t=1,根据函数的单调性得到最值.【详解】∵PQ∥y轴,P(t,0),∴Q(t,f(t))即Q(t,),又f(x)=etx(t>0)的导数f′(x)=tetx,∴过Q的切线斜率k=t,设R(r,0),则k,∴r=t,即R(t,0),PR=t﹣(t),又S(1,f(1))即S(1,et),∴△PRS的面积为S,导数S′,由S′=0得t=1,当t>1时,S′>0,当0<t<1时,S′<0,∴t=1为极小值点,也为最小值点,∴△PRS的面积的最小值为.故答案为:.【点睛】本题考查了利用导数求面积的最值问题,意在考查学生的计算能力和应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)曲线的普通方程为;直线的直角坐标方程为(2)【解析】

(1)利用消去参数,将曲线的参数方程化成普通方程,利用互化公式,将直线的极坐标方程化为直角坐标方程;(2)根据(1)求出曲线的极坐标方程,分别联立射线与曲线以及射线与直线的极坐标方程,求出和,即可求出.【详解】解:(1)因为(为参数),所以消去参数,得,所以曲线的普通方程为.因为所以直线的直角坐标方程为.(2)曲线的极坐标方程为.设的极径分别为和,将()代入,解得,将()代入,解得.故.【点睛】本题考查利用消参法将参数方程化成普通方程以及利用互化公式将极坐标方程化为直角坐标方程,还考查极径的运用和两点间距离,属于中档题.18、(1);(2).【解析】

(1)把代入已知条件,得到关于的方程,得到的值,从而得到的值.(2)由(1)中得到的的值和已知条件,求出,再根据正弦定理求出边长.【详解】(1)因为,,所以,,所以,即.因为,所以,因为,所以.(2).在中,由正弦定理得,所以,解得.【点睛】本题考查三角函数公式的运用,正弦定理解三角形,属于简单题.19、(1)(2)【解析】

(1)运用三角形面积公式求出的长度,然后再运用余弦定理求出的长.(2)运用正弦定理分别表示出和,结合已知条件计算出结果.【详解】(1)由在中,由余弦定理可得(2)由已知得在中,由正弦定理可知在中,由正弦定理可知故【点睛】本题考查了正弦定理、三角形面积公式以及余弦定理,结合三角形熟练运用各公式是解题关键,此类题目是常考题型,能够运用公式进行边角互化,需要掌握解题方法.20、(1)证明见解析;(2)存在,.【解析】

(1)根据题意证出,,再由线面垂直的判定定理即可证出.(2)连接AC交DM于点Q,连接EQ,利用线面平行的性质定理可得,从而可得,在正方形ABCD中,由即可求解.【详解】(1)证明:在正方形ABCD中,M,N分别是AB,AD的中点,∴,,.∴.∴.又,∴,∴.∵为等边三角形,N是AD的中点,∴.又平面平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论