人教版数学八年级下册第十八章平行四边形测试题带答案_第1页
人教版数学八年级下册第十八章平行四边形测试题带答案_第2页
人教版数学八年级下册第十八章平行四边形测试题带答案_第3页
人教版数学八年级下册第十八章平行四边形测试题带答案_第4页
人教版数学八年级下册第十八章平行四边形测试题带答案_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页人教版八年级下册数学第十八章考试试卷评卷人得分一、单选题1.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可以是()A.1∶2∶3∶4B.1∶2∶2∶1C.1∶1∶2∶2D.2∶1∶2∶12.在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60° B.∠A=120° C.∠C+∠D=180° D.∠C+∠A=180°3.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形4.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为()A.8 B.10 C.12 D.165.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8 B.10 C.12 D.146.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M、C两点间的距离为()A0.5kmA.0.6km B.0.9km C.1.2km7.如图,矩形ABCD中,,,且BE与DF之间的距离为3,则AE的长是A. B. C. D.8.如图,四边形ABCD的四边相等,且面积为120cm2,对角线AC=24cm,则四边形ABCD的周长为()A.52cm B.40cm C.39cm D.26cm9.如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()A.(﹣6,2) B.(0,2) C.(2,0) D.(2,2)10.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A. B. C. D.评卷人得分二、填空题11.如图,在平行四边形ABCD中,AE⊥BC于E,AC=AD,∠CAE=56°,则∠D=_____.12.如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD的中点,则PQ的的长度为________.13.如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为_____.14.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.15.如图所示,四边形ABCD是矩形,AB=4cm,∠CBD︰∠ABD=2︰1,则AC=________cm.16.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为__________.17.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.18.如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则平行四边形ABCD的周长为____.19.如图,M、N是正方形ABCD的边CD上的两个动点,满足,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是______.20.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为.21.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是_______;(选填矩形、菱形、正方形、无法确定)(直接填写结果)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为________,∠ABC=________°.(直接填写结果)评卷人得分三、解答题22.如图,在▱ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F,试判断四边形AECF是不是平行四边形,并说明理由.23.如图,在□ABCD中,AB=DB,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.求证:四边形DFBE是矩形.24.如图,在▱ABCD中,过B点作BM⊥AC于点E,交CD于点M,过D点作DN⊥AC于点F,交AB于点N.(1)求证:四边形BMDN是平行四边形;(2)已知AF=12,EM=5,求AN的长.25.已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.26.如图,在等腰三角形ABC中,AB=AC,AH⊥BC,点E是AH上一点,延长AH至点F,使FH=EH.(1)求证:四边形EBFC是菱形;(2)如果∠BAC=∠ECF,求证:AC⊥CF.27.如图,对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,将纸片展平;再一次折叠,使点D落到MN上的点F处,折痕AP交MN于E;延长PF交AB于G.求证:(1)△AFG≌△AFP;(2)△APG为等边三角形.28.如图,已知正方形ABCD的对角线AC,BD交于点O,点E,F分别是OB,OC上的动点.当动点E,F满足BE=CF时.(1)写出所有以点E或F为顶点的全等三角形;(不得添加辅助线)(2)求证:AE⊥BF.参考答案1.C【解析】分析:根据平行四边形的性质得到∠A=∠C,∠B=∠D,∠B+∠C=180°,∠A+∠D=180°,根据以上结论即可选出答案.详解:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴∠A:∠B:∠C:∠D的值可以是1:2:1:2.故选C.点睛:本题主要考查对平行四边形的性质的理解和掌握,能根据平行四边形的性质进行判断是解此题的关键,题目比较典型,难度适中.2.D【解析】∵四边形ABCD是平行四边形,∴∠D=∠B=60°.故A正确;∵AD∥BC,∴∠C+∠D=180°,故C正确;∵AD∥BC,∴∠A+∠B=180°,∴∠A=180°-∠B=120°,故B正确;∵四边形ABCD是平行四边形,∴∠C=∠A=120°,故D不正确,故选D.3.B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.4.D【解析】试题分析:因为点D,E,F分别是AB,BC,AC的中点,所以DE,EF是△ABC的中位线,所以DE=AF=AC,EF=AD=AB,所以四边形ADEF的周长=AB+AC=6+10=16,故选D.考点:三角形的中位线定理.5.B【解析】试题分析:根据平行四边形的性质可知AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故选B.点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.6.D【解析】【详解】根据直角三角形斜边上的中线等于斜边的一半即可求得距离为1.2km.故选D7.C【解析】【分析】如图,过点D作,垂足为G,则,首先证明≌,由全等三角形的性质可得到,设,则,在中依据勾股定理列方程求解即可.【详解】如图所示:过点D作,垂足为G,则,,,,≌,,设,则,在中,,,解得:,故选C.【点睛】本题考查了矩形的性质、勾股定理的应用、全等三角形的判定与性质,依据题意列出关于x的方程是解题的关键.8.A【解析】试题分析:如图,连接AC、BD相交于点O,∵四边形ABCD的四边相等,∴四边形ABCD为菱形,∴AC⊥BD,S四边形ABCD=AC•BD,∴×24BD=120,解得BD=10cm,∴OA=12cm,OB=5cm,在Rt△AOB中,由勾股定理可得AB==13(cm),∴四边形ABCD的周长=4×13=52(cm),故选A.考点:菱形的判定与性质.9.B【解析】【分析】首先根据正方形的性质求出D点坐标,再将D点横坐标加上3,纵坐标不变即可.【详解】∵在正方形ABCD中,A、B、C三点的坐标分别是(-1,2),(-1,0),(-3,0),∴D(-3,2),∴将正方形ABCD向右平移3个单位,则平移后点D的坐标是(0,2),故选B.【点睛】本题考查了正方形的性质,坐标与图形变化﹣平移,熟练掌握坐标平移规律“左减右加,上加下减”是解题的关键10.D【解析】【详解】∵四边形ABCD是正方形,M为边AD的中点,∴DM=DC=1.∴.∴ME=MC=∴ED=EM-DM=.∵四边形EDGF是正方形,∴DG=DE=.故选D.11.73°【解析】试题解析:在平行四边形ABCD中,∥故答案为12.2.5【解析】分析:根据矩形的性质可得AC=BD=10,BO=DO=BD=5,再根据三角形中位线定理可得PQ=DO=2.5.详解:∵四边形ABCD是矩形,∴AC=BD=10,BO=DO=BD,∴OD=BD=5,∵点P、Q是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=DO=2.5.故答案为2.5.点睛:此题主要考查了矩形的性质,以及三角形中位线定理,关键是掌握矩形对角线相等且互相平分.13.70°【解析】【分析】设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,依据∠EFC=∠EFC',即可得到180°﹣α=40°+α,进而得出∠BEF的度数.【详解】∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.【点睛】本题考查了矩形的性质、折叠的性质,熟练掌握相关的性质是解题的关键.14.3【解析】【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴AE==3,∴AB=3,故答案为3.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.15.【解析】设∠CBD=2x,∠ABD=x,则2x+x=90°,所以x=30°.又因为OA=OB,所以∠OAB=30°.在Rt△ABC中,设BC=ycm,则AC=2ycm,所以(2y)2-y2=42,解得.∴cm.16.6【解析】【分析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.【详解】解:∵四边形ABCD为正方形,且边长为3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3+3=617.12【解析】【分析】根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半,再根据菱形的面积等于对角线乘积的一半求出面积解答.【详解】∵菱形的两条对角线的长分别为6和8,

∴菱形的面积=×6×8=24,

∵O是菱形两条对角线的交点,

∴阴影部分的面积=×24=12.

故答案是:12.【点睛】本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.18.20【解析】∴AB=CD,BC=AD,OB=OD,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,∴DE+CE+CD=BE+CE+CD=BC+CD=10,∴平行四边形ABCD的周长=2(BC+CD)=20;故答案为20.19.【解析】【分析】先判断出≌,得出,进而判断出≌,得出,即可判断出,根据直角三角形斜边上的中线等于斜边的一半可得,利用勾股定理列式求出OC,然后根据三角形的三边关系可知当O、F、C三点共线时,CF的长度最小.【详解】如图,在正方形ABCD中,,,,在和中,,≌,,在和中,,≌,,,,,,取AD的中点O,连接OF、OC,则,在中,,根据三角形的三边关系,,当O、F、C三点共线时,CF的长度最小,最小值,故答案为.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系等,综合性较强,有一定的难度,确定出CF最小时点F的位置是解题关键.20.1【解析】试题分析:根据三角形的中位线定理得:A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,所以△A2B2C2的周长等于△A1B1C1的周长的一半,以此类推可求出△A5B5C5的周长为△A1B1C1的周长的124,则周长=(7+4+5)×考点:三角形中位线的性质.21.(1)菱形;(2)AE=10,∠ABC=120°.【解析】试题分析:(1)根据角平分线的画法以及菱形的判定方法得出答案;(2)根据菱形的性质得出AF的长度,然后根据勾股定理得出AE的长度,最后根据∠ABO的正弦值得出角度.试题解析:(1)菱形(2)依题意,可知AE为角平分线,因为ABEF的周长为40,所以,AF=10,又FO=5,AO==,所以,AE=,,所以,∠ABO=120°,∠ABC=120°考点:(1)角平分线的画法;(2)菱形的判定及其性质;(3)勾股定理22.见解析【解析】试题分析:根据垂直,利用内错角相等两直线平行可得AE∥CF,在根据平行四边形的性质证明△ABE与△DCF全等,根据全等三角形对应边相等可得AE=CF,然后根据有一组对边平行且相等的四边形是平行四边形即可证明.试题解析:四边形AECF是平行四边形,理由如下:∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEF=∠CFE=90°,∴AE∥CF(内错角相等,两直线平行),在平行四边形ABCD中,AB=CD,AB∥CD,∴∠ABE=∠CDF,在△ABE与△DCF中,,∴△ABE≌△CDF(AAS),∴AE=CF,∴四边形AECF是平行四边形(有一组对边平行且相等的四边形是平行四边形).23.证明见解析【解析】试题分析:根据平行四边形的性质得到对边平行,然后根据平行线的性质和角平分线的性质,可得DF∥BE,然后可证四边形DFBE是平行四边形,再根据有一个角是直角的平行四边形是矩形可证.试题解析:∵四边形ABCD是平行四边形∴AD∥BC,CD∥AB∴∠CDB=∠ABD∵BE平分∠ABD,DF平分∠CDB∴,∴∠FDB=∠EBD∴DF∥BE∵AD∥BC,DF∥BE∴四边形DFBE是平行四边形∵AB=DB,BE平分∠ABD∴∠DEB=90°∴四边形DFBE是矩形24.(1)详见解析;(2)13.【解析】【分析】(1)只要证明DN∥BM,DM∥BN即可;(2)只要证明△CEM≌△AFN,可得FN=EM=5,在Rt△AFN中,根据勾股定理AN=即可解决问题.【详解】解:(1)∵四边形ABCD是平行四边形,∴CD∥AB,∵BM⊥AC,DN⊥AC,∴DN∥BM,∴四边形BMDN是平行四边形;(2)∵四边形BMDN是平行四边形,∴DM=BN,∵CD=AB,CD∥AB,∴CM=AN,∠MCE=∠NAF,∵∠CEM=∠AFN=90°,∴△CEM≌△AFN,∴FN=EM=5,在Rt△AFN中,AN===13.【点睛】本题考查平行四边形的性质和判定、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.见解析(2)【解析】【分析】(1)根据三角形中位线定理和全等三角形的判定证明即可;(2)利用正方形的性质和矩形的面积公式解答即可.【详解】(1)连接EF,∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,连接GH,可得:EF⊥GH且EF=GH,∵在△BEC中,点G,H分别是BE,CE的中点,∴且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=【点睛】此题考查正方形的性质,关键是根据全等三角形的判定和正方形的性质解答.26.(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)根据题意可证得△BCE为等腰三角形,由AH⊥CB,则BH=HC,从而得出四边形EBFC是菱形;(2)由(1)得∠2=∠3,再根据∠BAC=∠ECF,得∠4=∠3,由AH⊥CB,得∠3+∠1+∠2=90°,从而得出AC⊥CF.试题解析:证明:(1)∵AB=AC,AH⊥CB,∴BH=HC.∵FH=EH,∴四边形EBFC是平行四边形.又∵AH⊥CB,∴四边形EBFC是菱形.(2)证明:如图,∵四边形EBFC是菱形.∴∠2=∠3=∠ECF.∵AB=AC,AH⊥CB,∴∠4=∠BAC.∵∠BAC=∠ECF∴∠4=∠3.∵AH⊥CB∴∠4+∠1+∠2=90°.∴∠3+∠1+∠2=90°.即:AC⊥CF.27.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由折叠的性质得到M、N分别为AD、BC的中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论