




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题17图形的变换(共50题)-2024年中考数学真题分项汇编(含答案)【全国通用】专题17图形的变换(共50题)一.选择题(共20小题)1.(2020•广东)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2) B.(﹣2,3) C.(2,﹣3) D.(3,﹣2)2.(2020•乐山)观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是()A.B. C.D.3.(2020•扬州)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是()A. B. C. D.4.(2020•菏泽)在平面直角坐标系中,将点P(﹣3,2)向右平移3个单位得到点P',则点P'关于x轴的对称点的坐标为()A.(0,﹣2) B.(0,2) C.(﹣6,2) D.(﹣6,﹣2)5.(2020•青岛)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A.5 B.325 C.25 6.(2020•枣庄)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.33 B.4 C.5 D.67.(2020•广东)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1 B.2 C.3 D.28.(2020•内江)如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连结EF.已知AB=3,BC=4,则EF的长为()A.3 B.5 C.5136 9.(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10° B.20° C.30° D.40°10.(2020•滨州)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A.123 B.133 C.11.(2020•孝感)如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为()A.54 B.154 C.4 12.(2020•河北)如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉洪的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充 B.应补充:且AB=CD C.应补充:且AB∥CD D.应补充:且OA=OC13.(2020•天津)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DE B.BC=EF C.∠AEF=∠D D.AB⊥DF14.(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3) B.(﹣3,2) C.(﹣3,﹣2) D.(﹣2,﹣3)15.(2020•菏泽)如图,将△ABC绕点A顺时针旋转角α,得到△ADE,若点E恰好在CB的延长线上,则∠BED等于()A.α2 B.23α C.α 16.(2020•北京)下列图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.17.(2020•青岛)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4) B.(2,﹣2) C.(3,﹣2) D.(﹣1,4)18.(2020•齐齐哈尔)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图②所示,则旋转角∠BAD的度数为()A.15° B.30° C.45° D.60°19.(2020•枣庄)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(-3,3) B.(﹣3,3) C.(-3,2+3) 20.(2020•苏州)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为()A.18° B.20° C.24° D.28°二.填空题(共23小题)21.(2020•天水)如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为.22.(2020•衡阳)如图,在平面直角坐标系中,点P1的坐标为(22,22),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OPn(n为正整数),则点P2020的坐标是23.(2020•滨州)如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为23、2、4,则正方形ABCD的面积为.24.(2020•泰安)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0,3),B(﹣1,1),C(3,1).△A'B'C′是△ABC关于x轴的对称图形,将△A'B'C'绕点B'逆时针旋转180°,点A'的对应点为M,则点M的坐标为.25.(2020•台州)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)26.(2020•金华)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.27.(2020•武威)如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,3),则点E的坐标为.28.(2020•襄阳)如图,矩形ABCD中,E为边AB上一点,将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF交DE于点N,连接BN.若BF•AD=15,tan∠BNF=52,则矩形ABCD的面积为29.(2020•牡丹江)如图,在Rt△ABC中,∠C=90°,点E在AC边上.将∠A沿直线BE翻折,点A落在点A'处,连接A'B,交AC于点F.若A'E⊥AE,cosA=45,则A'F30.(2020•武汉)如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.31.(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为.32.(2020•黑龙江)如图,在边长为4的正方形ABCD中,将△ABD沿射线BD平移,得到△EGF,连接EC、GC.求EC+GC的最小值为.33.(2020•凉山州)如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F是BC上一动点,若将△EBF沿EF对折后,点B落在点P处,则点P到点D的最短距离为.34.(2020•黑龙江)在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=35a,连接AE,将△ABE沿AE折叠.若点B的对应点B′落在矩形ABCD的边上,则折痕的长为35.(2020•达州)如图,点P(﹣2,1)与点Q(a,b)关于直线1(y=﹣1)对称,则a+b=.36.(2020•德州)如图,在4×4的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是.37.(2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为°;(2)当四边形APCD是平行四边形时,ABQR的值为38.(2020•甘孜州)如图,有一张长方形纸片ABCD,AB=8cm,BC=10cm,点E为CD上一点,将纸片沿AE折叠,BC的对应边B′C′恰好经过点D,则线段DE的长为cm.39.(2020•聊城)如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为.40.(2020•黑龙江)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为.41.(2020•常德)如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为.42.(2020•铜仁市)如图,在矩形ABCD中,AD=4,将∠A向内翻折,点A落在BC上,记为A1,折痕为DE.若将∠B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB=.43.(2020•杭州)如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=,BE=.三.解答题(共7小题)44.(2020•绥化)如图,在边长均为1个单位长度的小正方形组成的网格中,点A,点B,点O均为格点(每个小正方形的顶点叫做格点).(1)作点A关于点O的对称点A1;(2)连接A1B,将线段A1B绕点A1顺时针旋转90°得点B对应点B1,画出旋转后的线段A1B1;(3)连接AB1,求出四边形ABA1B1的面积.45.(2020•黔西南州)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有个;A.0B.1C.2D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.46.(2020•达州)如图,△ABC中,BC=2AB,D、E分别是边BC、AC的中点.将△CDE绕点E旋转180度,得△AFE.(1)判断四边形ABDF的形状,并证明;(2)已知AB=3,AD+BF=8,求四边形ABDF的面积S.47.(2020•黑龙江)如图①,在Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别在AC、BC边上,DC=EC,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.(1)BE与MN的数量关系是.(2)将△DEC绕点C逆时针旋转到图②和图③的位置,判断BE与MN有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.48.(2020•武威)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN=45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.49.(2020•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=22(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小.当PA+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.50.(2020•湖州)已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知如图1,若∠C=60°,D是AB的中点,求证:AP=12(2)变式求异如图2,若∠C=90°,m=62,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.专题17图形的变换(共50题)一.选择题(共20小题)1.(2020•广东)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2) B.(﹣2,3) C.(2,﹣3) D.(3,﹣2)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解答】解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).故选:D.2.(2020•乐山)观察下列各方格图中阴影部分所示的图形(每一小方格的边长为1),如果将它们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是()A.B. C.D.【分析】先根据拼剪前后的面积不变,求出拼成正方形的边长,再依此裁剪可得.【解答】解:由题意,选项D阴影部分面积为6,A,B,C的阴影部分的面积为5,如果能拼成正方形,选项D的正方形的边长为6,选项A,B,C的正方形的边长为5,观察图象可知,选项A,B,C阴影部分沿方格边线或对角线剪开均可得图1的5个图形,可以拼成图2的边长为5的正方形,故选:D.3.(2020•扬州)“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标识等作品的设计上,使对称之美惊艳了千年的时光.在下列与扬州有关的标识或简图中,不是轴对称图形的是()A. B. C. D.【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不合题意.故选:C.4.(2020•菏泽)在平面直角坐标系中,将点P(﹣3,2)向右平移3个单位得到点P',则点P'关于x轴的对称点的坐标为()A.(0,﹣2) B.(0,2) C.(﹣6,2) D.(﹣6,﹣2)【分析】先根据向右平移3个单位,横坐标加3,纵坐标不变,求出点P'的坐标,再根据关于x轴对称,横坐标不变,纵坐标相反解答.【解答】解:∵将点P(﹣3,2)向右平移3个单位得到点P',∴点P'的坐标是(0,2),∴点P'关于x轴的对称点的坐标是(0,﹣2).故选:A.5.(2020•青岛)如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A.5 B.325 C.25 【分析】由矩形的性质,折叠轴对称的性质,可求出AF=FC=AE=5,由勾股定理求出AB,AC,进而求出OA即可.【解答】解:∵矩形ABCD,∴AD∥BC,AD=BC,AB=CD,∴∠EFC=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB=5在Rt△ABC中,AC=42+∴OA=OC=25,故选:C.6.(2020•枣庄)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.33 B.4 C.5 D.6【分析】根据折叠的性质得到AF=AB,∠AFE=∠B=90°,根据等腰三角形的性质得到AF=CF,于是得到结论.【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:D.7.(2020•广东)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1 B.2 C.3 D.2【分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.8.(2020•内江)如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连结EF.已知AB=3,BC=4,则EF的长为()A.3 B.5 C.5136 【分析】求出BD=5,AE=EM,∠A=∠BME=90°,证明△EDM∽△BDA,由相似三角形的性质得出EDBD=EMAB,设DE=x,则AE=EM=4﹣x,得出x5=4-x3,解得x=52,同理△DNF∽△DCB,得出DFBD=NFBC,设DF=y【解答】解:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠A=∠C=∠EDF=90°,∴BD=A∵将矩形ABCD沿BE所在直线折叠,使点A落在BD上的点M处,∴AE=EM,∠A=∠BME=90°,∴∠EMD=90°,∵∠EDM=∠ADB,∴△EDM∽△BDA,∴EDBD设DE=x,则AE=EM=4﹣x,∴x5解得x=5∴DE=5同理△DNF∽△DCB,∴DFBD设DF=y,则CF=NF=3﹣y,∴y5解得y=5∴DF=5∴EF=D故选:C.9.(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10° B.20° C.30° D.40°【分析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.【解答】解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.10.(2020•滨州)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=5,EN=1,则OD的长为()A.123 B.133 C.【分析】根据中位线定理可得AM=2,根据折叠的性质和等腰三角形的性质可得A′M=A′N=2,过M点作MG⊥EF于G,可求A′G,根据勾股定理可求MG,进一步得到BE,再根据平行线分线段成比例可求OF,从而得到OD.【解答】解:∵EN=1,∴由中位线定理得AM=2,由折叠的性质可得A′M=2,∵AD∥EF,∴∠AMB=∠A′NM,∵∠AMB=∠A′MB,∴∠A′NM=∠A′MB,∴A′N=2,∴A′E=3,A′F=2过M点作MG⊥EF于G,∴NG=EN=1,∴A′G=1,由勾股定理得MG=2∴BE=OF=MG=3∴OF:BE=2:3,解得OF=2∴OD=3故选:B.11.(2020•孝感)如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为()A.54 B.154 C.4 【分析】连接EG,根据AG垂直平分EF,即可得出EG=FG,设CE=x,则DE=5﹣x=BF,FG=EG=8﹣x,再根据Rt△CEG中,CE2+CG2=EG2,即可得到CE的长.【解答】解:如图所示,连接EG,由旋转可得,△ADE≌△ABF,∴AE=AF,DE=BF,又∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=5﹣x=BF,FG=8﹣x,∴EG=8﹣x,∵∠C=90°,∴Rt△CEG中,CE2+CG2=EG2,即x2+22=(8﹣x)2,解得x=15∴CE的长为154故选:B.12.(2020•河北)如图,将△ABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的△CDA与△ABC构成平行四边形,并推理如下:小明为保证嘉洪的推理更严谨,想在方框中“∵CB=AD,”和“∴四边形…”之间作补充,下列正确的是()A.嘉淇推理严谨,不必补充 B.应补充:且AB=CD C.应补充:且AB∥CD D.应补充:且OA=OC【分析】根据两组对边分别相等的四边形是平行四边形判定即可.【解答】解:∵CB=AD,AB=CD,∴四边形ABCD是平行四边形,故选:B.13.(2020•天津)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A.AC=DE B.BC=EF C.∠AEF=∠D D.AB⊥DF【分析】依据旋转可得,△ABC≌△DEC,再根据全等三角形的性质,即可得出结论.【解答】解:由旋转可得,△ABC≌△DEC,∴AC=DC,故A选项错误,BC=EC,故B选项错误,∠AEF=∠DEC=∠B,故C选项错误,∠A=∠D,又∵∠ACB=90°,∴∠A+∠B=90°,∴∠D+∠B=90°,∴∠BFD=90°,即DF⊥AB,故D选项正确,故选:D.14.(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3) B.(﹣3,2) C.(﹣3,﹣2) D.(﹣2,﹣3)【分析】直接利用关于原点对称点的性质得出答案.【解答】解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2).故选:C.15.(2020•菏泽)如图,将△ABC绕点A顺时针旋转角α,得到△ADE,若点E恰好在CB的延长线上,则∠BED等于()A.α2 B.23α C.α 【分析】证明∠ABE+∠ADE=180°,推出∠BAD+∠BED=180°即可解决问题.【解答】解:∵∠ABC=∠ADE,∠ABC+∠ABE=180°,∴∠ABE+∠ADE=180°,∴∠BAD+∠BED=180°,∵∠BAD=α,∴∠BED=180°﹣α.故选:D.16.(2020•北京)下列图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、既是中心对称图形,又是轴对称图形,符合题意.故选:D.17.(2020•青岛)如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是()A.(0,4) B.(2,﹣2) C.(3,﹣2) D.(﹣1,4)【分析】根据平移和旋转的性质,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,即可得点A的对应点A′的坐标.【解答】解:如图,△A′B′C′即为所求,则点A的对应点A′的坐标是(﹣1,4).故选:D.18.(2020•齐齐哈尔)有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图②所示,则旋转角∠BAD的度数为()A.15° B.30° C.45° D.60°【分析】由平行线的性质可得∠CFA=∠D=90°,由外角的性质可求∠BAD的度数.【解答】解:如图,设AD与BC交于点F,∵BC∥DE,∴∠CFA=∠D=90°,∵∠CFA=∠B+∠BAD=60°+∠BAD,∴∠BAD=30°故选:B.19.(2020•枣庄)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(-3,3) B.(﹣3,3) C.(-3,2+3) 【分析】如图,过点B′作B′H⊥y轴于H.解直角三角形求出′H,B′H即可.【解答】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=3∴OH=2+1=3,∴B′(-3故选:A.20.(2020•苏州)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为()A.18° B.20° C.24° D.28°【分析】由旋转的性质可得∠C=∠C',AB=AB',由等腰三角形的性质可得∠C=∠CAB',∠B=∠AB'B,由三角形的外角性质和三角形内角和定理可求解.【解答】解:∵AB'=CB',∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB'C',∴∠C=∠C',AB=AB',∴∠B=∠AB'B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°﹣108°,∴∠C=24°,∴∠C'=∠C=24°,故选:C.二.填空题(共23小题)21.(2020•天水)如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为2.【分析】根据旋转的性质可知,△ADF≌△ABG,然后即可得到DF=BG,∠DAF=∠BAG,然后根据题目中的条件,可以得到△EAG≌△EAF,再根据DF=3,AB=6和勾股定理,可以得到DE的长,本题得以解决.【解答】解:由题意可得,△ADF≌△ABG,∴DF=BG,∠DAF=∠BAG,∵∠DAB=90°,∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠BAG+∠EAB=45°,∴∠EAF=∠EAG,在△EAG和△EAF中,AG=AF∠EAG=∠EAF∴△EAG≌△EAF(SAS),∴GE=FE,设BE=x,则GE=BG+BE=3+x,CE=6﹣x,∴EF=3+x,∵CD=6,DF=3,∴CF=3,∵∠C=90°,∴(6﹣x)2+32=(3+x)2,解得,x=2,即CE=2,故答案为:2.22.(2020•衡阳)如图,在平面直角坐标系中,点P1的坐标为(22,22),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OPn(n为正整数),则点P2020的坐标是(﹣22018×2,﹣22018【分析】根据题意得出OP1=1,OP2=2,OP3=4,如此下去,得到线段OP4=8=23,OP5=16=24…,OPn=2n﹣1,再利用旋转角度得出点P2020的坐标与点P5的坐标在同一直线上,进而得出答案.【解答】解:∵点P1的坐标为(22,22),将线段OP1绕点O按逆时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP∴OP1=1,OP2=2,∴OP3=4,如此下去,得到线段OP4=23,OP5=24…,∴OPn=2n﹣1,由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P2020的坐标与点P5的坐标在同一直线上,正好在第三象限的角平分线上,∴点P2020的坐标是(﹣22018×2,﹣22018×故答案为:(﹣22018×2,﹣22018×23.(2020•滨州)如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为23、2、4,则正方形ABCD的面积为14+43.【分析】如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.首先证明∠PMC=90°,推出∠CMB=∠APB=135°,推出A,P,M共线,利用勾股定理求出AB2即可.【解答】解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.∵BP=BM=2,∠PBM∴PM=2PB∵PC=4,PA=CM=23,∴PC2=CM2+PM2,∴∠PMC=90°,∵∠BPM=∠BMP=45°,∴∠CMB=∠APB=135°,∴∠APB+∠BPM=180°,∴A,P,M共线,∵BH⊥PM,∴PH=HM,∴BH=PH=HM=1,∴AH=23+∴AB2=AH2+BH2=(23+1)2+12=14+43∴正方形ABCD的面积为14+43.故答案为14+43.24.(2020•泰安)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0,3),B(﹣1,1),C(3,1).△A'B'C′是△ABC关于x轴的对称图形,将△A'B'C'绕点B'逆时针旋转180°,点A'的对应点为M,则点M的坐标为(﹣2,1).【分析】延长A'B'后得出点M,进而利用图中坐标解答即可.【解答】解:将△A'B'C'绕点B'逆时针旋转180°,如图所示:所以点M的坐标为(﹣2,1),故答案为:(﹣2,1).25.(2020•台州)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为a+b.(用含a,b的代数式表示)【分析】如图,连接DK,DN,证明S四边形DMNT=S△DKN=14【解答】解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=14∴正方形ABCD的面积=4×14a+b=a+故答案为a+b.26.(2020•金华)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是16cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为6013cm【分析】(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,求出矩形的长和宽即可解决问题.(2)如图3中,连接EF交OC于H.想办法求出EF,利用平行线分线段成比例定理即可解决问题.【解答】解:(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,∵OE=OF=1cm,∴EF=2cm,∴AB=CD=2cm,∴此时四边形ABCD的周长为2+2+6+6=16(cm),故答案为16.(2)如图3中,连接EF交OC于H.由题意CE=CF=25×6=∵OE=OF=1cm,∴CO垂直平分线段EF,∵OC=CE2∵12•OE•EC=12•CO∴EH=1×125∴EF=2EH=2413(∵EF∥AB,∴EFAB∴AB=52×故答案为601327.(2020•武威)如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,3),则点E的坐标为(7,0).【分析】利用平移的性质解决问题即可.【解答】解:∵A(3,3),D(6,3),∴点A向右平移3个单位得到D,∵B(4,0),∴点B向右平移3个单位得到E(7,0),故答案为(7,0).28.(2020•襄阳)如图,矩形ABCD中,E为边AB上一点,将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,连接AF交DE于点N,连接BN.若BF•AD=15,tan∠BNF=52,则矩形ABCD的面积为155【分析】由折叠的性质得出∠BNF=∠BEF,由条件得出tan∠BEF=52,设BF=5x,BE=2x,由勾股定理得出EF=3x,得出AB【解答】解:∵将△ADE沿DE折叠,使点A的对应点F恰好落在边BC上,∴AF⊥DE,AE=EF,∵矩形ABCD中,∠ABF=90°,∴B,E,N,F四点共圆,∴∠BNF=∠BEF,∴tan∠BEF=5设BF=5x,BE=2x∴EF=BF2∴AE=3x,∴AB=5x,∴AB=5BF∴S矩形ABCD=AB•AD=5BF•AD=5×故答案为:155.29.(2020•牡丹江)如图,在Rt△ABC中,∠C=90°,点E在AC边上.将∠A沿直线BE翻折,点A落在点A'处,连接A'B,交AC于点F.若A'E⊥AE,cosA=45,则A'FBF=【分析】根据题意设AC=4x,AB=5x,则BC=3x,再证明△BCE为等腰直角三角形,得到EC=3x,根据△A′EF∽△BCF,得到AE'BC【解答】解:∵∠C=90°,cosA=4∴ACAB=45,设AC=4x,AB=5x,则∵AE⊥AE′,∴∠AEA′=90°,A′E∥BC,由于折叠,∴∠A′EB=∠AEB=(360﹣90)÷2=135°,且△A′EF∽△BCF,∴∠BEC=45°,即△BCE为等腰直角三角形,∴EC=3x,∴AE=AC﹣EC=x=A′E,∴A'EBC故答案为:1330.(2020•武汉)如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是14t【分析】连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,由勾股定理得出(2﹣x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.【解答】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,∵AE2+AM2=EM2,∴(2﹣x)2+t2=x2,解得x=t∴DE=t∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=AM∴FG=t∵CG=DE=t∴CF=t∴S四边形CDEF=12(CF+DE)×1=故答案为:14t31.(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为15.【分析】作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.首先证明△ABA′是等边三角形,求出A′H,根据垂线段最短解决问题即可.【解答】解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB=ADtan30°=∵A′H⊥AB,∴AH=HB=53,∴A′H=3AH∵AM+MN=A′M+MN≤A′H,∴AM+MN≤15,∴AM+MN的最小值为15.故答案为15.32.(2020•黑龙江)如图,在边长为4的正方形ABCD中,将△ABD沿射线BD平移,得到△EGF,连接EC、GC.求EC+GC的最小值为45.【分析】如图,连接DE,作点D关于直线AE的对称点T,连接AT,ET,CT.首先证明B,A,T共线,求出TC,证明四边形EGCD是平行四边形,推出DE=CG,推出EC+CG=EC+ED=EC+TE,根据TE+EC≥TC即可解决问题.【解答】解:如图,连接DE,作点D关于直线AE的对称点T,连接AT,ET,CT.∵四边形ABCD是正方形,∴AB=BC═AD=4,∠ABC=90°,∠ABD=45°,∵AE∥BD,∴∠EAD=∠ABD=45°,∵D,T关于AE对称,∴AD=AT=4,∠TAE=∠EAD=45°,∴∠TAD=90°,∵∠BAD=90°,∴B,A,T共线,∴CT=BT2∵EG=CD,EG∥CD,∴四边形EGCD是平行四边形,∴CG=EC,∴EC+CG=EC+ED=EC+TE,∵TE+EC≥TC,∴EC+CG≥45,∴EC+CG的最小值为45.33.(2020•凉山州)如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F是BC上一动点,若将△EBF沿EF对折后,点B落在点P处,则点P到点D的最短距离为10.【分析】先根据勾股定理计算ED的长,当E、P、D共线时,DP最小,即最短距离是此时PD的长.【解答】解:如图,连接PD,DE,∵四边形ABCD是矩形,∴∠A=90°,∵AB=8,BE=3,∴AE=5,∵AD=12,∴DE=5由折叠得:EB=EP=3,∵EP+DP≥ED,∴当E、P、D共线时,DP最小,∴DP=DE﹣EP=13﹣3=10;故答案为:10.34.(2020•黑龙江)在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=35a,连接AE,将△ABE沿AE折叠.若点B的对应点B′落在矩形ABCD的边上,则折痕的长为2或30【分析】分两种情况:①当点B'落在AD边上时,证出△ABE是等腰直角三角形,得出AE=2AB=②当点B'落在CD边上时,证明△ADB'∽△B'CE,得出B'DEC=AB'B'E,求出BE=3【解答】解:分两种情况:①当点B'落在AD边上时,如图1所示:∵四边形ABCD是矩形,∴∠BAD=∠B=90°,∵将△ABE沿AE折叠.点B的对应点B′落在矩形ABCD的AD边上,∴∠BAE=∠B'AE=12∠∴△ABE是等腰直角三角形,∴AB=BE=1,AE=2AB=②当点B'落在CD边上时,如图2所示:∵四边形ABCD是矩形,∴∠BAD=∠B=∠C=∠D=90°,AD=BC=a,∵将△ABE沿AE折叠.点B的对应点B′落在矩形ABCD的CD边上,∴∠B=∠AB'E=90°,AB'=AB=1,BE'=BE=35∴CE=BC﹣BE=a-35a=25a,B在△ADB'和△B'CE中,∠B'AD=∠EB'C=90°﹣∠AB'D,∠D=∠C=90°,∴△ADB'∽△B'CE,∴B'DEC=AB'解得:a=53,或∴BE=35a∴AE=A综上所述,折痕的长为2或305故答案为:2或30535.(2020•达州)如图,点P(﹣2,1)与点Q(a,b)关于直线1(y=﹣1)对称,则a+b=﹣5.【分析】利用轴对称的性质求出等Q的坐标即可.【解答】解:∵点P(﹣2,1)与点Q(a,b)关于直线1(y=﹣1)对称,∴a=﹣2,b=﹣3,∴a+b=﹣2﹣3=﹣5,故答案为﹣5.36.(2020•德州)如图,在4×4的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是16【分析】直接利用轴对称图形的性质结合概率求法得出答案.【解答】解:如图所示:当分别将1,2位置涂黑,构成的黑色部分图形是轴对称图形,故新构成的黑色部分图形是轴对称图形的概率是:212故答案为:1637.(2020•安徽)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为30°;(2)当四边形APCD是平行四边形时,ABQR的值为3【分析】(1)由折叠的性质可得∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,由平角的性质可得∠D+∠C=180°,∠AQP=90°,可证AD∥BC,由平行线的性质可得∠DAB=90°,即可求解;(2)由平行四边形和折叠的性质可得AR=PR,由直角三角形的性质可得AP=2PB=2QR,AB=3PB【解答】解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠PAB=30°,故答案为:30;(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,∴QR=12∵∠PAB=30°,∠B=90°,∴AP=2PB,AB=3PB∴PB=QR,∴ABQR故答案为:3.38.(2020•甘孜州)如图,有一张长方形纸片ABCD,AB=8cm,BC=10cm,点E为CD上一点,将纸片沿AE折叠,BC的对应边B′C′恰好经过点D,则线段DE的长为5cm.【分析】由折叠的性质可得AB=AB'=8cm,BC=B'C'=10cm,CE=C'E,由勾股定理可求B'D的长,由勾股定理可求解.【解答】解:∵将纸片沿AE折叠,BC的对应边B′C′恰好经过点D,∴AB=AB'=8cm,BC=B'C'=10cm,CE=C'E,∴B'D=AD2∴C'D=B'C'﹣B'D=4cm,∵DE2=C'D2+C'E2,∴DE2=16+(8﹣DE)2,∴DE=5cm,故答案为5.39.(2020•聊城)如图,在直角坐标系中,点A(1,1),B(3,3)是第一象限角平分线上的两点,点C的纵坐标为1,且CA=CB,在y轴上取一点D,连接AC,BC,AD,BD,使得四边形ACBD的周长最小,这个最小周长的值为4+25.【分析】根据平行线的性质得到∠BAC=45°,得到∠C=90°,求得AC=BC=2,作B关于y轴的对称点E,连接AE交y轴于D,则此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+AE,过E作EF⊥AC交CA的延长线于F,根据勾股定理即可得到结论.【解答】解:∵点A(1,1),点C的纵坐标为1,∴AC∥x轴,∴∠BAC=45°,∵CA=CB,∴∠ABC=∠BAC=45°,∴∠C=90°,∵B(3,3)∴C(3,1),∴AC=BC=2,作B关于y轴的对称点E,连接AE交y轴于D,则此时,四边形ACBD的周长最小,这个最小周长的值=AC+BC+AE,过E作EF⊥AC交CA的延长线于F,则EF=BC=2,AF=6﹣2=4,∴AE=EF2∴最小周长的值=AC+BC+AE=4+25,故答案为:4+25.40.(2020•黑龙江)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为3.【分析】根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到EG=AB=1,EG∥AB,推出四边形EGCD是平行四边形,得到ED=GC,于是得到EC+GC的最小值=EC+GD的最小值,根据平移的性质得到点E在过点A且平行于BD的定直线上,作点D关于定直线的对称点M,连接CM交定直线于AE,解直角三角形即可得到结论.【解答】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△EGF,∴EG=AB=1,EG∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴EG=CD,EG∥CD,∴四边形EGCD是平行四边形,∴ED=GC,∴EC+GC的最小值=EC+ED的最小值,∵点E在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点M,连接CM交定直线于E,则CM的长度即为EC+DE的最小值,∵∠EAD=∠ADB=30°,AD=1,∴∠ADM=60°,DH=MH=12AD∴DM=1,∴DM=CD,∵∠CDM=∠MDG+∠CDB=90°+30°=120°,∴∠M=∠DCM=30°,∴CM=2×32CD故答案为:3.41.(2020•常德)如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为12.【分析】设正方形ABCD的边长为x,由翻折及已知线段的长,可用含x的式子分别表示出BE、BF及EF的长;在Rt△BEF中,由勾股定理得关于x的方程,解得x的值,即为DG的长.【解答】解:设正方形ABCD的边长为x,由翻折可得:DG=DA=DC=x,∵GF=4,EG=6,∴AE=EG=6,CF=GF=4,∴BE=x﹣6,BF=x﹣4,EF=6+4=10,如图1所示:在Rt△BEF中,由勾股定理得:BE2+BF2=EF2,∴(x﹣6)2+(x﹣4)2=102,∴x2﹣12x+36+x2﹣8x+16=100,∴x2﹣10x﹣24=0,∴(x+2)(x﹣12)=0,∴x1=﹣2(舍),x2=12.∴DG=12.故答案为:12.42.(2020•铜仁市)如图,在矩形ABCD中,AD=4,将∠A向内翻折,点A落在BC上,记为A1,折痕为DE.若将∠B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB=23【分析】依据△A1DB1≌△A1DC(AAS),即可得出A1C=A1B1,再根据折叠的性质,即可得到A1C=12BC=2,最后依据勾股定理进行计算,即可得到CD的长,即【解答】解:由折叠可得,A1D=AD=4,∠A=∠EA1D=90°,∠BA1E=∠B1A1E,BA1=B1A1,∠B=∠A1B1E=90°,∴∠EA1B1+∠DA1B1=90°=∠BA1E+∠CA1D,∴∠DA1B1=∠CA1D,又∵∠C=∠A1B1D,A1D=A1D,∴△A1DB1≌△A1DC(AAS),∴A1C=A1B1,∴BA1=A1C=12∴Rt△A1CD中,CD=4∴AB=23故答案为:2343.(2020•杭州)如图是一张矩形纸片,点E在AB边上,把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=2,BE=5-1【分析】根据矩形的性质得到AD=BC,∠ADC=∠B=∠DAE=90°,根据折叠的性质得到CF=BC,∠CFE=∠B=90°,EF=BE,根据全等三角形的性质得到DF=AE=2;根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是矩形,∴AD=BC,∠ADC=∠B=∠DAE=90°,∵把△BCE沿直线CE对折,使点B落在对角线AC上的点F处,∴CF=BC,∠CFE=∠B=90°,EF=BE,∴CF=AD,∠CFD=90°,∴∠ADE+∠CDF=∠CDF+∠DCF=90°,∴∠ADF=∠DCF,∴△ADE≌△FCD(ASA),∴DF=AE=2;∵∠AFE=∠CFD=90°,∴∠AFE=∠DAE=90°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴AEEF∴2EF∴EF=5∴BE=EF=5故答案为:2,5-三.解答题(共7小题)44.(2020•绥化)如图,在边长均为1个单位长度的小正方形组成的网格中,点A,点B,点O均为格点(每个小正方形的顶点叫做格点).(1)作点A关于点O的对称点A1;(2)连接A1B,将线段A1B绕点A1顺时针旋转90°得点B对应点B1,画出旋转后的线段A1B1;(3)连接AB1,求出四边形ABA1B1的面积.【分析】(1)依据中心对称的性质,即可得到点A关于点O的对称点A1;(2)依据线段A1B绕点A1顺时针旋转90°得点B对应点B1,即可得出旋转后的线段A1B1;(2)依据割补法进行计算,即可得到四边形ABA1B1的面积.【解答】解:(1)如图所示,点A1即为所求;(2)如图所示,线段A1B1即为所求;(3)如图,连接BB1,过点A作AE⊥BB1,过点A1作A1F⊥BB1,则四边形ABA1B1的面积=S△ABB45.(2020•黔西南州)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是B;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:(1)(3)(5)(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有C个;A.0B.1C.2D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.【分析】(1)根据旋转图形,中心对称图形的定义判断即可.(2)旋转对称图形,且有一个旋转角是60度判断即可.(3)根据旋转图形的定义判断即可.(4)根据要求画出图形即可.【解答】解:(1)是旋转图形,不是中心对称图形是正五边形,故选B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为(1)(3)(5).(3)命题中①③正确,故选C.(4)图形如图所示:46.(2020•达州)如图,△ABC中,BC=2AB,D、E分别是边BC、AC的中点.将△CDE绕点E旋转180度,得△AFE.(1)判断四边形ABDF的形状,并证明;(2)已知AB=3,AD+BF=8,求四边形ABDF的面积S.【分析】(1)结论:四边形ABDF是菱形.根据邻边相等的平行四边形是菱形证明即可.(2)设OA=x,OB=y,构建方程组求出2xy即可解决问题.【解答】解:(1)结论:四边形ABDF是菱形.∵CD=DB,CE=EA,∴DE∥AB,AB=2DE,由旋转的性质可知,DE=EF,∴AB=DF,AB∥DF,∴四边形ABDF是平行四边形,∵BC=2AB,BD=DC,∴BA=BD,∴四边形ABDF是菱形.(2)连接BF,AD交于点O.∵四边形ABDF是菱形,∴AD⊥BF,OB=OF,AO=OD,设OA=x,OB=y,则有2x+2y=8x∴x+y=4,∴x2+2xy+y2=16,∴2xy=7,∴S菱形ABDF=12×BF×AD47.(2020•黑龙江)如图①,在Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别在AC、BC边上,DC=EC,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.(1)BE与MN的数量关系是BE=2NM(2)将△DEC绕点C逆时针旋转到图②和图③的位置,判断BE与MN有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.【分析】(1)如图①中,只要证明△PMN的等腰直角三角形,再利用三角形的中位线定理即可解决问题.(2)如图②中,结论仍然成立.连接AD,延长BE交AD于点H.由△ECB≌△DCA,推出BE=AD,∠DAC=∠EBC,即可推出BH⊥AD,由M、N、P分别为AE、BD、AB的中点,推出PM∥BE,PM=12BE,PN∥AD,PN=12AD,推出PM=PN,∠MPN=90°,可得BE=2PM=2×【解答】解:(1)如图①中,∵AM=ME,AP=PB,∴PM∥BE,PM=12∵BN=DN,AP=PB,∴PN∥AD,PN=12∵AC=BC,CD=CE,∴AD=BE,∴PM=PN,∵∠ACB=90°,∴AC⊥BC,∴∵PM∥BC,PN∥AC,∴PM⊥PN,∴△PMN的等腰直角三角形,∴MN=2PM∴MN=2•12∴BE=2MN故答案为BE=2MN(2)如图②中,结论仍然成立.理由:连接AD,延长BE交AD于点H.∵△ABC和△CDE是等腰直角三角形,∴CD=CE,CA=CB,∠ACB=∠DCE=90°,∵∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ACD=∠ECB,∴△ECB≌△DCA(AAS),∴BE=AD,∠DAC=∠EBC,∵∠AHB=180°﹣(∠HAB+∠ABH)=180°﹣(45°+∠HAC+∠ABH)=∠180°﹣(45°+∠HBC+∠ABH)=180°﹣90°=90°,∴BH⊥AD,∵M、N、P分别为AE、BD、AB的中点,∴PM∥BE,PM=12BE,PN∥AD,PN=∴PM=PN,∠MPN=90°,∴BE=2PM=2×22MN=48.(2020•武威)如图,点M,N分别在正方形ABCD的边BC,CD上,且∠MAN=45°.把△ADN绕点A顺时针旋转90°得到△ABE.(1)求证:△AEM≌△ANM.(2)若BM=3,DN=2,求正方形ABCD的边长.【分析】(1)想办法证明∠MAE=∠MAN=45°,根据SAS证明三角形全等即可.(2)设CD=BC=x,则CM=x﹣3,CN=x﹣2,在Rt△MCN中,利用勾股定理构建方程即可解决问题.【解答】(1)证明:∵△ADN≌△ABE,∴∠DAN=∠BAE,DN=BE,∵∠DAB=90°,∠MAN=45°,∴∠MAE=∠BAE+∠BAM=∠DAN+∠BAM=45°,∴∠MAE=∠MAN,∵MA=MA,∴△AEM≌△ANM(SAS).(2)解:设CD=BC=x,则CM=x﹣3,CN=x﹣2,∵△AEM≌△ANM,∴EM=MN,∵BE=DN,∴MN=BM+DN=5,∵∠C=90°,∴MN2=CM2+CN2,∴25=(x﹣2)2+(x﹣3)2,解得,x=6或﹣1(舍弃),∴正方形ABCD的边长为6.49.(2020•重庆)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=22(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小.当PA+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.【分析】(1)由“SAS”可证△BAD≌△CAE,可得∠ABD=∠ACE=45°,可求∠BCE=90°,由直角三角形的性质和等腰直角三角形的性质可得结论;(2)过点G作GH⊥BC于H,设CD=a,可得BD=2a,BC=3a,AB=AC=322a,由全等三角形的性质可得BD=CE=2a,由锐角三角函数可求GH=2CH,可求CH=a,可求BG的长,即可求AG=22a(3)将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,可得当点A,点P,点N,点M共线时,PA+PB+PC值最小,由旋转的性质可得△BPN是等边三角形,△CBM是等边三角形,可得∠BPN=∠BNP=60°,BM=CM,由直角三角形的性质可求解.【解答】证明:(1)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵把AD绕点A逆时针旋转90°,得到AE,∴AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,DE=2AD又∵AB=AC,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE=45°,∴∠BCE=∠BCA+∠ACE=90°,∵点F是DE的中点,∴CF=12DE=(2)AG=26理由如下:如图2,过点G作GH⊥BC于H,∵BD=2CD,∴设CD=a,则BD=2a,BC=3a,∵∠BAC=90°,AB=AC,∴AB=AC=BC2由(1)可知:△BAD≌△CAE,∴BD=CE=2a,∵CF=DF,∴∠FDC=∠FCD,∴tan∠FDC=tan∠FCD,∴CECD∴GH=2CH,∵GH⊥BC,∠ABC=45°,∴∠ABC=∠BGH=45°,∴BH=GH,∴BG=2∵BH+CH=BC=3a,∴CH=a,BH=GH=2a,∴BG=22a,∴AG=BG﹣AB=22a=22(3)如图3﹣1,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,∴BP=BN,PC=NM,∠PBN=60°,∴△BPN是等边三角形,∴BP=PN,∴PA+PB+PC=AP+PN+MN,∴当点A,点P,点N,点M共线时,PA+PB+PC值最小,此时,如图3﹣2,连接MC,∵将△BPC绕点B顺时针旋转60°得到△BNM,∴BP=BN,BC=BM,∠PBN=60°=∠CBM,∴△BPN是等边三角形,△CBM是等边三角形,∴∠BPN=∠BNP=60°,BM=CM,∵BM=CM,AB=AC,∴AM垂直平分BC,∵AD⊥BC,∠BPD=60°,∴BD=3PD∵AB=AC,∠BAC=90°,AD⊥BC,∴AD=BD,∴3PD=PD+AP,∴PD=3+1∴BD=3PD=3+由(1)可知:CE=BD=3+350.(2020•湖州)已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知如图1,若∠C=60°,D是AB的中点,求证:AP=12(2)变式求异如图2,若∠C=90°,m=62,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.【分析】(1)证明△ADP是等边三角形即可解决问题.(2)分两种情形:情形一:当点B落在线段CH上的点P1处时,如图2﹣1中.情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,分别求解即可.(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.求出DP=DB时AD的值,结合图形即可判断.【解答】(1)证明:∵AC=BC,∠C=60°,∴△ABC是等边三角形,∴AC=AB,∠A=60°,由题意,得DB=DP,DA=DB,∴DA=DP,∴△ADP使得等边三角形,∴AP=AD=12AB=(2)解:∵AC=BC=62,∠C=90°,∴AB=A∵DH⊥AC,∴DH∥BC,∴△ADH∽△ABC,∴DHBC∵AD=7,∴DH6∴DH=7将∠B沿过点D的直线折叠,情形一:当点B落在线段CH上的点P1处时,如图2﹣1中,∵AB=12,∴DP1=DB=AB﹣AD=5,∴HP1=D∴A1=AH+HP1=42,情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,同法可证HP2=2∴AP2=AH﹣HP2=32,综上所述,满足条件的AP的值为42或32.(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.∵CA=CB,CH⊥AB,∴AH=HB=6,∴CH=A当DB=DP时,设BD=PD=x,则AD=12﹣x,∵sinA=CH∴810∴x=16∴AD=AB﹣BD=20观察图形可知当6<a<203时,存在两次不同的折叠,使点B落在专题18图形的相似与位似(共50题)一.选择题(共18小题)1.(2020•河北)在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR2.(2020•重庆)如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A.1:2 B.1:3 C.1:4 D.1:53.(2020•遂宁)如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则BEEGA.12 B.13 C.234.(2020•遂宁)如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论:①∠AED+∠EAC+∠EDB=90°,②AP=FP,③AE=102④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,⑤CE•EF=EQ•DE.其中正确的结论有()A.5个 B.4个 C.3个 D.2个5.(2020•潍坊)如图,点E是▱ABCD的边AD上的一点,且DEAE=12,连接BE并延长交CD的延长线于点F,若DE=3,DFA.21 B.28 C.34 D.426.(2020•天水)如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m7.(2020•牡丹江)如图,在矩形ABCD中,AB=3,BC=10,点E在BC边上,DF⊥AE,垂足为F.若DF=6,则线段EF的长为()A.2 B.3 C.4 D.58.(2020•泸州)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段MN分为两线段MG,GN,使得其中较长的一段MG是全长MN与较短的一段GN的比例中项,即满足MGMN=GNMG=5-12,后人把5-12这个数称为“黄金分割”数,把点G称为线段MN的“黄金分割”点.如图,在△ABC中,已知AB=AC=3,A.10﹣45 B.35-5 C.5-2529.(2020•成都)如图,直线l1∥l2∥l3,直线AC和DF被l1,l2,l3所截,AB=5,BC=6,EF=4,则DE的长为()A.2 B.3 C.4 D.1010.(2020•哈尔滨)如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 操检维合一管理制度
- 收费所后勤管理制度
- 教师编制谁管理制度
- 教育局安全管理制度
- 服从项目部管理制度
- 木粉尘车间管理制度
- 术后止痛泵管理制度
- 机关网格化管理制度
- 机场风险源管理制度
- 机电物资部管理制度
- 建筑工程施工安全服务方案及质量保障措施
- 行政执法三项制度培训课件
- 公司加减分管理制度
- 中小学科学教育问题试题及答案教师资格笔试
- DB51-T 3267-2025 公路应急抢通保通技术规程
- 科技合作居间协议
- 2025至2030年中国人工智能生成内容(AIGC)行业投资规划及前景预测报告
- 地理会考试卷原题及答案
- 湖南新华书店集团招聘考试真题2024
- 心率测定-教学设计-八年级体育健康教育
- 2025年ps cs5操作试题及答案
评论
0/150
提交评论