甘肃省庆阳六中2025届高考数学倒计时模拟卷含解析_第1页
甘肃省庆阳六中2025届高考数学倒计时模拟卷含解析_第2页
甘肃省庆阳六中2025届高考数学倒计时模拟卷含解析_第3页
甘肃省庆阳六中2025届高考数学倒计时模拟卷含解析_第4页
甘肃省庆阳六中2025届高考数学倒计时模拟卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省庆阳六中2025届高考数学倒计时模拟卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A={x|–1<x<2},B={x|x>1},则A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)2.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是()A. B. C. D.3.设,则复数的模等于()A. B. C. D.4.已知点P在椭圆τ:=1(a>b>0)上,点P在第一象限,点P关于原点O的对称点为A,点P关于x轴的对称点为Q,设,直线AD与椭圆τ的另一个交点为B,若PA⊥PB,则椭圆τ的离心率e=()A. B. C. D.5.若两个非零向量、满足,且,则与夹角的余弦值为()A. B. C. D.6.已知函数,若函数的所有零点依次记为,且,则()A. B. C. D.7.阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A. B.6 C. D.8.已知正四面体外接球的体积为,则这个四面体的表面积为()A. B. C. D.9.“幻方”最早记载于我国公元前500年的春秋时期《大戴礼》中.“阶幻方”是由前个正整数组成的—个阶方阵,其各行各列及两条对角线所含的个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示).则“5阶幻方”的幻和为()A.75 B.65 C.55 D.4510.已知集合A,B=,则A∩B=A. B. C. D.11.设递增的等比数列的前n项和为,已知,,则()A.9 B.27 C.81 D.12.在中,,则=()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,满足约束条件,则的最大值为________.14.已知复数满足(为虚数单位),则复数的实部为____________.15.设α、β为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:①若m∥n,则m∥α;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③若α∥β,m⊂α,n⊂β,则m∥n;④若α⊥β,α∩β=m,n⊂α,m⊥n,则n⊥β;其中正确命题的序号为_____.16.某高校组织学生辩论赛,六位评委为选手成绩打出分数的茎叶图如图所示,若去掉一个最高分,去掉一个最低分,则所剩数据的平均数与中位数的差为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.18.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线极坐标方程为.若直线交曲线于,两点,求线段的长.19.(12分)已知函数.(1)若曲线在处的切线为,试求实数,的值;(2)当时,若有两个极值点,,且,,若不等式恒成立,试求实数m的取值范围.20.(12分)已知的内角的对边分别为,且满足.(1)求角的大小;(2)若的面积为,求的周长的最小值.21.(12分)已知函数,.(1)若时,解不等式;(2)若关于的不等式在上有解,求实数的取值范围.22.(10分)如图,在四棱锥中,底面是直角梯形,,,,是正三角形,,是的中点.(1)证明:;(2)求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据并集的求法直接求出结果.【详解】∵,∴,故选C.【点睛】考查并集的求法,属于基础题.2、D【解析】

设圆锥的母线长为l,底面半径为R,再表达圆锥表面积与球的表面积公式,进而求得即可得圆锥轴截面底角的大小.【详解】设圆锥的母线长为l,底面半径为R,则有,解得,所以圆锥轴截面底角的余弦值是,底角大小为.故选:D【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.3、C【解析】

利用复数的除法运算法则进行化简,再由复数模的定义求解即可.【详解】因为,所以,由复数模的定义知,.故选:C【点睛】本题考查复数的除法运算法则和复数的模;考查运算求解能力;属于基础题.4、C【解析】

设,则,,,设,根据化简得到,得到答案.【详解】设,则,,,则,设,则,两式相减得到:,,,即,,,故,即,故,故.故选:.【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力和转化能力.5、A【解析】

设平面向量与的夹角为,由已知条件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求.【详解】设平面向量与的夹角为,,可得,在等式两边平方得,化简得.故选:A.【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.6、C【解析】

令,求出在的对称轴,由三角函数的对称性可得,将式子相加并整理即可求得的值.【详解】令,得,即对称轴为.函数周期,令,可得.则函数在上有8条对称轴.根据正弦函数的性质可知,将以上各式相加得:故选:C.【点睛】本题考查了三角函数的对称性,考查了三角函数的周期性,考查了等差数列求和.本题的难点是将所求的式子拆分为的形式.7、D【解析】

用列举法,通过循环过程直接得出与的值,得到时退出循环,即可求得.【详解】执行程序框图,可得,,满足条件,,,满足条件,,,满足条件,,,由题意,此时应该不满足条件,退出循环,输出S的值为.故选D.【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的与的值是解题的关键,难度较易.8、B【解析】

设正四面体ABCD的外接球的半径R,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积.【详解】将正四面体ABCD放在一个正方体内,设正方体的棱长为a,如图所示,设正四面体ABCD的外接球的半径为R,则,得.因为正四面体ABCD的外接球和正方体的外接球是同一个球,则有,∴.而正四面体ABCD的每条棱长均为正方体的面对角线长,所以,正四面体ABCD的棱长为,因此,这个正四面体的表面积为.故选:B.【点睛】本题考查球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题.9、B【解析】

计算的和,然后除以,得到“5阶幻方”的幻和.【详解】依题意“5阶幻方”的幻和为,故选B.【点睛】本小题主要考查合情推理与演绎推理,考查等差数列前项和公式,属于基础题.10、A【解析】

先解A、B集合,再取交集。【详解】,所以B集合与A集合的交集为,故选A【点睛】一般地,把不等式组放在数轴中得出解集。11、A【解析】

根据两个已知条件求出数列的公比和首项,即得的值.【详解】设等比数列的公比为q.由,得,解得或.因为.且数列递增,所以.又,解得,故.故选:A【点睛】本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.12、B【解析】

在上分别取点,使得,可知为平行四边形,从而可得到,即可得到答案.【详解】如下图,,在上分别取点,使得,则为平行四边形,故,故答案为B.【点睛】本题考查了平面向量的线性运算,考查了学生逻辑推理能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

根据题意,画出可行域,将目标函数看成可行域内的点与原点距离的平方,利用图象即可求解.【详解】可行域如图所示,易知当,时,的最大值为.故答案为:9.【点睛】本题考查了利用几何法解决非线性规划问题,属于中档题.14、【解析】

利用复数的概念与复数的除法运算计算即可得到答案.【详解】,所以复数的实部为2.故答案为:2【点睛】本题考查复数的除法运算,考查学生的基本计算能力,是一道基础题.15、④【解析】

根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.【详解】对于①,当m∥n时,由直线与平面平行的定义和判定定理,不能得出m∥α,①错误;对于②,当m⊂α,n⊂α,且m∥β,n∥β时,由两平面平行的判定定理,不能得出α∥β,②错误;对于③,当α∥β,且m⊂α,n⊂β时,由两平面平行的性质定理,不能得出m∥n,③错误;对于④,当α⊥β,且α∩β=m,n⊂α,m⊥n时,由两平面垂直的性质定理,能够得出n⊥β,④正确;综上知,正确命题的序号是④.故答案为:④.【点睛】本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力.16、【解析】

先根据茎叶图求出平均数和中位数,然后可得结果.【详解】剩下的四个数为83,85,87,95,且这四个数的平均数,这四个数的中位数为,则所剩数据的平均数与中位数的差为.【点睛】本题主要考查茎叶图的识别和统计量的计算,侧重考查数据分析和数学运算的核心素养.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)在已知极坐标方程两边同时乘以ρ后,利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2可得曲线C的直角坐标方程;(2)联立直线l的参数方程与x2=4y由韦达定理以及参数的几何意义和弦长公式可得弦长与已知弦长相等可解得.【详解】解:(1)在ρ+ρcos2θ=8sinθ中两边同时乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8ρsinθ,∴x2+y2+x2﹣y2=8y,即x2=4y,所以曲线C的直角坐标方程为:x2=4y.(2)联立直线l的参数方程与x2=4y得:(cosα)2t2﹣4(sinα)t+4=0,设A,B两点对应的参数分别为t1,t2,由△=16sin2α﹣16cos2α>0,得sinα>,t1+t2=,由|PM|=,所以20sin2α+9sinα﹣20=0,解得sinα=或sinα=﹣(舍去),所以sinα=.【点睛】本题考查了简单曲线的极坐标方程,属中档题.18、【解析】

由,化简得,由,所以直线的直角坐标方程为,因为曲线的参数方程为,整理得,直线的方程与曲线的方程联立,,整理得,设,则,根据弦长公式求解即可.【详解】由,化简得,又因为,所以直线的直角坐标方程为,因为曲线的参数方程为,消去,整理得,将直线的方程与曲线的方程联立,,消去,整理得,设,则,所以,将,代入上式,整理得.【点睛】本题考查参数方程,极坐标方程的应用,结合弦长公式的运用,属于中档题.19、(1);(2).【解析】

(1)根据题意,求得的值,根据切点在切线上以及斜率等于,构造方程组求得的值;(2)函数有两个极值点,等价于方程的两个正根,,不等式恒成立,等价于恒成立,,令,求出导数,判断单调性,即可得到的范围,即的范围.【详解】(1)由题可知,,,联立可得.(2)当时,,,有两个极值点,,且,,是方程的两个正根,,,不等式恒成立,即恒成立,,由,,得,,令,,在上是减函数,,故.【点睛】该题考查的是有关导数的问题,涉及到的知识点有导数的几何意义,函数的极值点的个数,构造新函数,应用导数研究函数的值域得到参数的取值范围,属于较难题目.20、(1)(2)【解析】

(1)因为,所以,由余弦定理得,化简得,可得,解得,又因为,所以.(6分)(2)因为,所以,则(当且仅当时,取等号).由(1)得(当且仅当时,取等号),解得.所以(当且仅当时,取等号),所以的周长的最小值为.21、(1)(2)【解析】

(1)零点分段法,分,,讨论即可;(2)当时,原问题可转化为:存在,使不等式成立,即.【详解】解:(1)若时,,当时,原不等式可化为,解得,所以,当时,原不等式可化为,解得,所以,当时,原不等式可化为,解得,所以,综上述:不等式的解集为;(2)当时,由得,即,故得,又由题意知:,即,故的范围为.【点睛】本题考查解绝对值不等式以及不等式能成立求参数,考查学生的运算能力,是一道容易题.22、(1)见证明;(2)【解析】

(1)设是的中点,连接、,先证明是平行四边形,再证明平面,即(2)以为坐标原点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论