下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章第五节利用三角形全等测距离练习题一、选择题要测量圆形工件的外径,工人师傅设计了如图所示的卡钳,点O为卡钳两柄交点,且有OA=OB=OC=OD,如果圆形工件恰好通过卡钳AB,则此工件的外径必是CD之长了,其中的依据是全等三角形的判定条件(
)A.SSS B.SAS C.ASA D.AAS如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至点D,使CD=CA,连接BC并延长至点E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离为(
)A.29米 B.58米 C.60米 D.116米花花不慎将一块三角形的玻璃打碎成了如图所示的四块(图中所标①、②、③、④),若要配块与原来大小一样的三角形玻璃,应该带(
)A.第①块
B.第②块
C.第③块
D.第④块如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是(
)A.SSS B.ASA C.AAS D.SAS如图,要测量池塘两岸相对的两点A,B的距离,小明在池塘外取AB的垂线BF上的点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上,这时测得DE的长就是AB的长,依据是(
)A.SSS B.SAS C.ASA D.HL如图,将一根笔直的竹竿斜放在竖直墙角AOB中,初始位置为CD,当一端C下滑至C′时,另一端D向右滑到D′,则下列说法正确的是(
)A.下滑过程中,始终有CC′=DD′
B.下滑过程中,始终有CC′≠DD′
C.若OC<OD,则下滑过程中,一定存在某个位置使得CC′=DD′
D.若OC>OD,则下滑过程中,一定存在某个位置使得CC′=DD′
在新修的花园小区中,有一条“Z”字形绿色长廊ABCD(如图),其中AB//CD,在AB,BC,CD三段绿色长廊上各修建一凉亭E,M,F,且BE=CF,M是BC的中点,E,M,F在一条直线上.若在凉亭M与F之间有一池塘,不能直接到达,要想知道M与F之间的距离,要测出的长度是(
)A.EM B.BE C.CF D.CM为了测量池塘两侧A,B两点间的距离,在地面上找一点C,连接AC,BC,使∠ACB=90°,然后在BC的延长线上确定点D,使CD=BC,得到△ABC≌△ADC,通过测量AD的长,得AB的长.那么△ABC≌△ADC的理由是(
)
A.SAS B.AAS C.ASA D.SSS小明在学习了全等三角形的相关知识后,发现了一种测量距离的方法,如图,小明直立在河岸边的O处,他压低帽子帽沿,使视线通过帽沿,恰好落在河对岸的A处,然后转过身,保持和刚才完全一样的姿势,这时视线落在水平地面的B处(A,O,B三点在同一水平直线上),小明通过测量O,B之间的距离,即得到O,A之间的距离.小明这种方法的原理是(
)A.SSS B.SAS C.ASA D.HL如图所示,A、B在一水池两侧,若BE=DE,∠B=∠D=90°,CD=10m,则水池宽AB为(
)A.8m
B.10m
C.12m
D.无法确定二、填空题两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,晓明同学在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AO=CO═12AC;③AC⊥BD;其中,正确的结论有______个.
王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,则两堵木墙之间的距离为______cm.在学习完“探索三角形全等的条件”一节后,小丽总结出很多全等三角形的模型,她设计了以下问题给同桌解决:做一个“U”字形框架PABQ,其中AB=20cm,AP,BQ足够长,PA⊥AB于点A,QB⊥AB于点B,点M从B出发向A运动,点N从B出发向Q运动,速度之比为2:3,运动到某一瞬间两点同时停止,在AP上取点C,使△ACM与△BMN全等,则AC的长度为______cm.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法是利用了全等三角形对应角相等,图中判断三角形全等的依据是
.如图,幼儿园的滑梯中有两个长度相等的梯子(BC=EF),左边滑梯的高度AC等于右边滑梯水平方向的长度DF,则∠ABC+∠DFE=________.
三、解答题如图,一条输电线路需跨越一个池塘,池塘两侧A、B处各立有一根电线杆,但利用现有皮尺无法直接量出A、B间的距离,请你设计一个方案,测出A、B间的距离,并说明理由.
在学习“利用三角形全等测距离”之后,七一班数学实践活动中,张老师让同学们测量池塘A,B之间的距离(无法直接测量).
小颖设计的方案是:先过点A作AB的垂线AM,在AM上顺次截取AC,CD,使CD=AC,然后过点D作DN⊥AD,连接BC并延长交DN于点E,则DE的长度即为AB的长度.
(1)小颖的作法你同意吗?并说明理由;
(2)如果利用全等三角形去解决这个问题,请你设计一个与小颖全等依据不同的方案,并画出图形.
答案一选择题B
B
B
A
C
D
A
A
C
B
二填空题11.3
12.20
13.8或15
14.SSS
15.90°
三解答题16.解:先在平地取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的长即为A,B的距离.
理由如下:在△ABC和△DEC中,
AC=DC∠ACB=∠DCEEC=BC,
∴△ABC≌△DEC(SAS),
∴AB=ED.17.解:(1)同意.
理由:连接AB.
在△ABC和△DEC中,
∠BA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房管家托管合同范例
- 上海闵行货车租赁合同模板
- 干部档案合同范例
- 演员签合同模板
- 消防专业合同范例
- 摄影店入股合同模板
- 承建喷泉工程合同范例
- 合同范例游乐场
- 保洁合同范本
- 派遣制劳动合同范例
- 统编版(2024)七年级上册道德与法治3.1《做有梦的少年》教案
- 部编版九下历史《全册问答式背诵手册》
- 2024-2025学年八年级地理上册 第一章 单元测试卷(人教版)
- 2024年秋季新外研版三年级上册英语课件 Appendices Mulan
- DB50-T 537-2024 旅游交通标志设置规范
- 2024年秋季新人教版一年级上册数学课件 第3单元 认识立体图形第2课时 认识立体图形
- 大学生职业规划报告
- 污水处理厂 双重预防体系全套资料汇编
- 芯片设计 CMOS模拟集成电路设计与仿真实例基于Cadence IC 617 课件全套 李潇然 第1-9章 CMOS模拟集成电路设计流程简介、ADE仿真概述- 模-数转换器
- 2024-2030年中国EDA云服务行业运营前景及未来发展潜力评估报告
- DL∕T 1909-2018 -48V电力通信直流电源系统技术规范
评论
0/150
提交评论