2024届广东省广州市彭加木纪念中学3月高三第一次在线大联考(江苏卷)_第1页
2024届广东省广州市彭加木纪念中学3月高三第一次在线大联考(江苏卷)_第2页
2024届广东省广州市彭加木纪念中学3月高三第一次在线大联考(江苏卷)_第3页
2024届广东省广州市彭加木纪念中学3月高三第一次在线大联考(江苏卷)_第4页
2024届广东省广州市彭加木纪念中学3月高三第一次在线大联考(江苏卷)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023届广东省广州市彭加木纪念中学3月高三第一次在线大联考(江苏卷)请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则()A. B. C. D.2.甲、乙、丙、丁四位同学高考之后计划去三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去社区,乙不去社区,则不同的安排方法种数为()A.8 B.7 C.6 D.53.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种4.已知F为抛物线y2=4x的焦点,过点F且斜率为1的直线交抛物线于A,B两点,则||FA|﹣|FB||的值等于()A. B.8 C. D.45.已知数列中,,若对于任意的,不等式恒成立,则实数的取值范围为()A. B.C. D.6.已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是()A.圆,但要去掉两个点 B.椭圆,但要去掉两个点C.双曲线,但要去掉两个点 D.抛物线,但要去掉两个点7.袋中装有标号为1,2,3,4,5,6且大小相同的6个小球,从袋子中一次性摸出两个球,记下号码并放回,如果两个号码的和是3的倍数,则获奖,若有5人参与摸球,则恰好2人获奖的概率是()A. B. C. D.8.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为()A. B. C. D.9.已知函数,若曲线在点处的切线方程为,则实数的取值为()A.-2 B.-1 C.1 D.210.如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A.72 B.64 C.48 D.3211.已知非零向量满足,若夹角的余弦值为,且,则实数的值为()A. B. C.或 D.12.若函数恰有3个零点,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为______________.(用数字作答)14.已知,是互相垂直的单位向量,若与λ的夹角为60°,则实数λ的值是__.15.在长方体中,,,,为的中点,则点到平面的距离是______.16.正四面体的各个点在平面同侧,各点到平面的距离分别为1,2,3,4,则正四面体的棱长为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在极坐标系中,已知曲线C的方程为(),直线l的方程为.设直线l与曲线C相交于A,B两点,且,求r的值.18.(12分)已知函数,其中,.(1)函数的图象能否与x轴相切?若能,求出实数a;若不能,请说明理由.(2)若在处取得极大值,求实数a的取值范围.19.(12分)已知在多面体中,平面平面,且四边形为正方形,且//,,,点,分别是,的中点.(1)求证:平面;(2)求平面与平面所成的锐二面角的余弦值.20.(12分)设函数,.(1)解不等式;(2)若对任意的实数恒成立,求的取值范围.21.(12分)管道清洁棒是通过在管道内释放清洁剂来清洁管道内壁的工具,现欲用清洁棒清洁一个如图1所示的圆管直角弯头的内壁,其纵截面如图2所示,一根长度为的清洁棒在弯头内恰好处于位置(图中给出的数据是圆管内壁直径大小,).(1)请用角表示清洁棒的长;(2)若想让清洁棒通过该弯头,清洁下一段圆管,求能通过该弯头的清洁棒的最大长度.22.(10分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

直接利用二倍角余弦公式与弦化切即可得到结果.【详解】∵,∴,故选D【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,同角三角函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型.2.B【解析】根据题意满足条件的安排为:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7种,选B.3.B【解析】

根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有C3若甲村有2外科,1名护士,则有C3则总共的分配方案为2×(9+9)=2×18=36种,故选:B.【点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.4.C【解析】

将直线方程代入抛物线方程,根据根与系数的关系和抛物线的定义即可得出的值.【详解】F(1,0),故直线AB的方程为y=x﹣1,联立方程组,可得x2﹣6x+1=0,设A(x1,y1),B(x2,y2),由根与系数的关系可知x1+x2=6,x1x2=1.由抛物线的定义可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故选C.【点睛】本题考查了抛物线的定义,直线与抛物线的位置关系,属于中档题.5.B【解析】

先根据题意,对原式进行化简可得,然后利用累加法求得,然后不等式恒成立转化为恒成立,再利用函数性质解不等式即可得出答案.【详解】由题,即由累加法可得:即对于任意的,不等式恒成立即令可得且即可得或故选B【点睛】本题主要考查了数列的通项的求法以及函数的性质的运用,属于综合性较强的题目,解题的关键是能够由递推数列求出通项公式和后面的转化函数,属于难题.6.A【解析】

根据题意可得,即知C在以AB为直径的圆上.【详解】,,,又,,平面,又平面,故在以为直径的圆上,又是内异于的动点,所以的轨迹是圆,但要去掉两个点A,B故选:A【点睛】本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题.7.C【解析】

先确定摸一次中奖的概率,5个人摸奖,相当于发生5次试验,根据每一次发生的概率,利用独立重复试验的公式得到结果.【详解】从6个球中摸出2个,共有种结果,两个球的号码之和是3的倍数,共有摸一次中奖的概率是,5个人摸奖,相当于发生5次试验,且每一次发生的概率是,有5人参与摸奖,恰好有2人获奖的概率是,故选:.【点睛】本题主要考查了次独立重复试验中恰好发生次的概率,考查独立重复试验的概率,解题时主要是看清摸奖5次,相当于做了5次独立重复试验,利用公式做出结果,属于中档题.8.C【解析】

由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,求出底面面积,代入锥体体积公式,可得答案.【详解】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,其底面面积,高,故体积,故选:.【点睛】本题考查的知识点是由三视图求几何体的体积,解决本题的关键是得到该几何体的形状.9.B【解析】

求出函数的导数,利用切线方程通过f′(0),求解即可;【详解】f(x)的定义域为(﹣1,+∞),因为f′(x)a,曲线y=f(x)在点(0,f(0))处的切线方程为y=2x,可得1﹣a=2,解得a=﹣1,故选:B.【点睛】本题考查函数的导数的几何意义,切线方程的求法,考查计算能力.10.B【解析】

由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,利用体积公式,即可求解。【详解】由题意,几何体的三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,所以几何体的体积为,故选B。【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线。求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解。11.D【解析】

根据向量垂直则数量积为零,结合以及夹角的余弦值,即可求得参数值.【详解】依题意,得,即.将代入可得,,解得(舍去).故选:D.【点睛】本题考查向量数量积的应用,涉及由向量垂直求参数值,属基础题.12.B【解析】

求导函数,求出函数的极值,利用函数恰有三个零点,即可求实数的取值范围.【详解】函数的导数为,令,则或,上单调递减,上单调递增,所以0或是函数y的极值点,函数的极值为:,函数恰有三个零点,则实数的取值范围是:.故选B.【点睛】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大.二、填空题:本题共4小题,每小题5分,共20分。13.5040.【解析】分两类,一类是甲乙都参加,另一类是甲乙中选一人,方法数为。填5040.【点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,甲与乙是两个特殊元素,对于特殊元素“优先法”,所以有了分类。本题还涉及不相邻问题,采用“插空法”。14.【解析】

根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【详解】解:由题意,设(1,0),(0,1),则(,﹣1),λ(1,λ);又夹角为60°,∴()•(λ)λ=2cos60°,即λ,解得λ.【点睛】本题考查了单位向量和平面向量数量积的运算问题,是中档题.15.【解析】

利用等体积法求解点到平面的距离【详解】由题在长方体中,,,所以,所以,设点到平面的距离为,解得故答案为:【点睛】此题考查求点到平面的距离,通过在三棱锥中利用等体积法求解,关键在于合理变换三棱锥的顶点.16.【解析】

不妨设点A,D,C,B到面的距离分别为1,2,3,4,平面向下平移两个单位,与正四面体相交,过点D,与AB,AC分别相交于点E,F,根据题意F为中点,E为AB的三等分点(靠近点A),设棱长为a,求得,再用余弦定理求得:,从而求得,再根据顶点A到面EDF的距离为,得到,然后利用等体积法求解,【详解】不妨设点A,D,C,B到面的距离分别为1,2,3,4,平面向下平移两个单位,与正四面体相交,过点D,与AB,AC分别相交于点E,F,如图所示:由题意得:F为中点,E为AB的三等分点(靠近点A),设棱长为a,,顶点D到面ABC的距离为所以,由余弦定理得:,所以,所以,又顶点A到面EDF的距离为,所以,因为,所以,解得,故答案为:【点睛】本题主要考查几何体的切割问题以及等体积法的应用,还考查了转化化归的思想和空间想象,运算求解的能力,属于难题,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.【解析】

先将曲线C和直线l的极坐标方程化为直角坐标方程,可得圆心到直线的距离,再由勾股定理,计算即得.【详解】以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,可得曲线C:()的直角坐标方程为,表示以原点为圆心,半径为r的圆.由直线l的方程,化简得,则直线l的直角坐标方程方程为.记圆心到直线l的距离为d,则,又,即,所以.【点睛】本题考查曲线和直线的极坐标方程化为直角坐标方程,是基础题.18.(1)答案见解析(2)【解析】

(1)假设函数的图象与x轴相切于,根据相切可得方程组,看方程是否有解即可;(2)求出的导数,设(),根据函数的单调性及在处取得极大值求出a的范围即可.【详解】(1)函数的图象不能与x轴相切,理由若下:.假设函数的图象与x轴相切于则即显然,,代入中得,无实数解.故函数的图象不能与x轴相切.(2)(),,设(),恒大于零.在上单调递增.又,,,∴存在唯一,使,且时,时,①当时,恒成立,在单调递增,无极值,不合题意.②当时,可得当时,,当时,.所以在内单调递减,在内单调递增,所以在处取得极小值,不合题意.③当时,可得当时,,当时,.所以在内单调递增,在内单调递减,所以在处取得极大值,符合题意.此时由得即,综上可知,实数a的取值范围为.【点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,属于难题.19.(1)证明见解析;(2).【解析】

(1)构造直线所在平面,由面面平行推证线面平行;(2)以为坐标原点,建立空间直角坐标系,分别求出两个平面的法向量,再由法向量之间的夹角,求得二面角的余弦值.【详解】(1)过点交于点,连接,如下图所示:因为平面平面,且交线为,又四边形为正方形,故可得,故可得平面,又平面,故可得.在三角形中,因为为中点,,故可得//,为中点;又因为四边形为等腰梯形,是的中点,故可得//;又,且平面,平面,故面面,又因为平面,故面.即证.(2)连接,,作交于点,由(1)可知平面,又因为//,故可得平面,则;又因为//,,故可得即,,两两垂直,则分别以,,为,,轴建立空间直角坐标系,则,,,,,,设面的法向量为,则,,则,可取,设平面的法向量为,则,,则,可取,可知平面与平面所成的锐二面角的余弦值为.【点睛】本题考查由面面平行推证线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论