




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州市师大附中2024年高三数学试题3月份考试试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,则的最小值为()A. B. C. D.2.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,则“函数有两个零点”是“”的().A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()A. B.C. D.4.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于()cm3A. B. C. D.5.已知,,,若,则()A. B. C. D.6.复数(为虚数单位),则的共轭复数在复平面上对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限7.已知若(1-ai)(3+2i)为纯虚数,则a的值为()A. B. C. D.8.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为A.48 B.72 C.90 D.969.已知等差数列的公差为-2,前项和为,若,,为某三角形的三边长,且该三角形有一个内角为,则的最大值为()A.5 B.11 C.20 D.2510.如图所示,正方体的棱,的中点分别为,,则直线与平面所成角的正弦值为()A. B. C. D.11.已知正三角形的边长为2,为边的中点,、分别为边、上的动点,并满足,则的取值范围是()A. B. C. D.12.若两个非零向量、满足,且,则与夹角的余弦值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设为正实数,若则的取值范围是__________.14.在△ABC中,a=3,,B=2A,则cosA=_____.15.若,则________,________.16.的展开式中二项式系数最大的项的系数为_________(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在中,角、、的对边分别为,,,,.(1)若,求的值;(2)若,求的面积.18.(12分)已知函数,若的解集为.(1)求的值;(2)若正实数,,满足,求证:.19.(12分)在直角坐标系中,是过定点且倾斜角为的直线;在极坐标系(以坐标原点为极点,以轴非负半轴为极轴,取相同单位长度)中,曲线的极坐标方程为.(1)写出直线的参数方程,并将曲线的方程化为直角坐标方程;(2)若曲线与直线相交于不同的两点,求的取值范围.20.(12分)设函数,直线与函数图象相邻两交点的距离为.(Ⅰ)求的值;(Ⅱ)在中,角所对的边分别是,若点是函数图象的一个对称中心,且,求面积的最大值.21.(12分)已知矩阵的一个特征值为4,求矩阵A的逆矩阵.22.(10分)已知函数,.(1)当x≥0时,f(x)≤h(x)恒成立,求a的取值范围;(2)当x<0时,研究函数F(x)=h(x)﹣g(x)的零点个数;(3)求证:(参考数据:ln1.1≈0.0953).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】,选B2、A【解析】
作出函数的图象,得到,把函数有零点转化为与在(2,4]上有交点,利用导数求出切线斜率,即可求得的取值范围,再根据充分、必要条件的定义即可判断.【详解】作出函数的图象如图,由图可知,,函数有2个零点,即有两个不同的根,也就是与在上有2个交点,则的最小值为;设过原点的直线与的切点为,斜率为,则切线方程为,把代入,可得,即,∴切线斜率为,∴k的取值范围是,∴函数有两个零点”是“”的充分不必要条件,故选A.【点睛】本题主要考查了函数零点的判定,考查数学转化思想方法与数形结合的解题思想方法,训练了利用导数研究过曲线上某点处的切线方程,试题有一定的综合性,属于中档题.3、D【解析】根据四个列联表中的等高条形图可知,图中D中共享与不共享的企业经济活跃度的差异最大,它最能体现共享经济对该部门的发展有显著效果,故选D.4、D【解析】解:根据几何体的三视图知,该几何体是三棱柱与半圆柱体的组合体,结合图中数据,计算它的体积为:V=V三棱柱+V半圆柱=×2×2×1+•π•12×1=(6+1.5π)cm1.故答案为6+1.5π.点睛:根据几何体的三视图知该几何体是三棱柱与半圆柱体的组合体,结合图中数据计算它的体积即可.5、B【解析】
由平行求出参数,再由数量积的坐标运算计算.【详解】由,得,则,,,所以.故选:B.【点睛】本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键.6、C【解析】
由复数除法求出,写出共轭复数,写出共轭复数对应点坐标即得【详解】解析:,,对应点为,在第三象限.故选:C.【点睛】本题考查复数的除法运算,共轭复数的概念,复数的几何意义.掌握复数除法法则是解题关键.7、A【解析】
根据复数的乘法运算法则化简可得,根据纯虚数的概念可得结果.【详解】由题可知原式为,该复数为纯虚数,所以.故选:A【点睛】本题考查复数的运算和复数的分类,属基础题.8、D【解析】因甲不参加生物竞赛,则安排甲参加另外3场比赛或甲学生不参加任何比赛①当甲参加另外3场比赛时,共有•=72种选择方案;②当甲学生不参加任何比赛时,共有=24种选择方案.综上所述,所有参赛方案有72+24=96种故答案为:96点睛:本题以选择学生参加比赛为载体,考查了分类计数原理、排列数与组合数公式等知识,属于基础题.9、D【解析】
由公差d=-2可知数列单调递减,再由余弦定理结合通项可求得首项,即可求出前n项和,从而得到最值.【详解】等差数列的公差为-2,可知数列单调递减,则,,中最大,最小,又,,为三角形的三边长,且最大内角为,由余弦定理得,设首项为,即得,所以或,又即,舍去,,d=-2前项和.故的最大值为.故选:D【点睛】本题考查等差数列的通项公式和前n项和公式的应用,考查求前n项和的最值问题,同时还考查了余弦定理的应用.10、C【解析】
以D为原点,DA,DC,DD1分别为轴,建立空间直角坐标系,由向量法求出直线EF与平面AA1D1D所成角的正弦值.【详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1的棱长为2,则,,,取平面的法向量为,设直线EF与平面AA1D1D所成角为θ,则sinθ=|,直线与平面所成角的正弦值为.故选C.【点睛】本题考查了线面角的正弦值的求法,也考查数形结合思想和向量法的应用,属于中档题.11、A【解析】
建立平面直角坐标系,求出直线,设出点,通过,找出与的关系.通过数量积的坐标表示,将表示成与的关系式,消元,转化成或的二次函数,利用二次函数的相关知识,求出其值域,即为的取值范围.【详解】以D为原点,BC所在直线为轴,AD所在直线为轴建系,设,则直线,设点,所以由得,即,所以,由及,解得,由二次函数的图像知,,所以的取值范围是.故选A.【点睛】本题主要考查解析法在向量中的应用,以及转化与化归思想的运用.12、A【解析】
设平面向量与的夹角为,由已知条件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求.【详解】设平面向量与的夹角为,,可得,在等式两边平方得,化简得.故选:A.【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考查计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据,可得,进而,有,而,令,得到,再用导数法求解,【详解】因为,所以,所以,所以,所以,令,,所以,当时,,当时,所以当时,取得最大值,又,所以取值范围是,故答案为:【点睛】本题主要考查基本不等式的应用和导数法求最值,还考查了运算求解的能力,属于难题,14、【解析】
由已知利用正弦定理,二倍角的正弦函数公式即可计算求值得解.【详解】解:∵a=3,,B=2A,∴由正弦定理可得:,∴cosA.故答案为.【点睛】本题主要考查了正弦定理,二倍角的正弦函数公式在解三角形中的应用,属于基础题.15、【解析】
根据诱导公式和二倍角公式计算得到答案.【详解】,故.故答案为:;.【点睛】本题考查了诱导公式和二倍角公式,属于简单题.16、5670【解析】
根据二项式展开的通项,可得二项式系数的最大项,可求得其系数.【详解】二项展开式一共有项,所以由二项式系数的性质可知二项式系数最大的项为第5项,系数为.故答案为:5670【点睛】本题考查了二项式定理展开式的应用,由通项公式求二项式系数,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)7(2)14【解析】
(1)在中,,可得,结合正弦定理,即可求得答案;(2)根据余弦定理和三角形面积公式,即可求得答案.【详解】(1)在中,,,,,,.(2),,,解得,.【点睛】本题主要考查了正弦定理和余弦定理解三角形,解题关键是掌握正弦定理边化角,考查了分析能力和计算能力,属于中档题.18、(1);(2)证明见详解.【解析】
(1)将不等式的解集用表示出来,结合题中的解集,求出的值;(2)利用柯西不等式证明.【详解】解:(1),,,因为的解集为,所以,;(2)由(1)由柯西不等式,当且仅当,,,等号成立.【点睛】本题考查了绝对值不等式的解法,利用柯西不等式证明不等式的问题,属于中档题.19、(1)(为参数),;(2)【解析】分析:(1)直线的参数方程为(为参数),其中表示之间的距离,而极坐标方程可化为,从而的直角方程为.(2)设,则,利用在圆上得到满足的方程,最后利用韦达定理就可求出两条线段的和.详解:(1)直线的参数方程为(为参数).曲线的极坐标方程可化为.把,代入曲线的极坐标方程可得,即.(2)把直线的参数方程为(为参数)代入圆的方程可得:.∵曲线与直线相交于不同的两点,∴,∴,又,∴.又,.∴,∵,∴,∴.∴的取值范围是.点睛:(1)直线的参数方程有多种形式,其中一种为(为直线的倾斜角,是参数),这样的参数方程中的参数有明确的几何意义,它表示之间的距离.(2)直角坐标方程转为极坐标方程的关键是利用公式,而极坐标方程转化为直角坐标方程的关键是利用公式,后者也可以把极坐标方程变形尽量产生以便转化.20、(Ⅰ)3;(Ⅱ).【解析】
(Ⅰ)函数,利用和差公式和倍角公式,化简即可求得;(Ⅱ)由(Ⅰ)知函数,根据点是函数图象的一个对称中心,代入可得,利用余弦定理、基本不等式的性质即可得出.【详解】(Ⅰ)的最大值为最小正周期为(Ⅱ)由题意及(Ⅰ)知,,故故的面积的最大值为.【点睛】本题考查三角函数的和差公式、倍角公式、三角函数的图象与性质、余弦定理、基本不等式的性质,考查理解辨析能力与运算求解能力,属于中档基础题.21、.【解析】
根据特征多项式可得,可得,进而可得矩阵A的逆矩阵.【详解】因为矩阵的特征多项式,所以,所以.因为,且,所以.【点睛】本题考查矩阵的特征多项式以及逆矩阵的求解,是基础题.22、(1);(2)见解析;(3)见解析【解析】
(1)令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),求得导数,讨论a>1和a≤1,判断导数的符号,由恒成立思想可得a的范围;(2)求得F(x)=h(x)﹣g(x)的导数和二阶导数,判断F'(x)的单调性,讨论a≤﹣1,a>﹣1,F(x)的单调性和零点个数;(3)由(1)知,当a=1时,ex>1+ln(x+1)对x>0恒成立,令;由(2)知,当a=﹣1时,对x<0恒成立,令,结合条件,即可得证.【详解】(Ⅰ)解:令H(x)=h(x)﹣f(x)=ex﹣1﹣aln(x+1)(x≥0),则,①若a≤1,则,H'(x)≥0,H(x)在[0,+∞)递增,H(x)≥H(0)=0,即f(x)≤h(x)在[0,+∞)恒成立,满足,所以a≤1;②若a>1,H′(x)=ex﹣在[0,+∞)递增,H'(x)≥H'(0)=1﹣a,且1﹣a<0,且x→+∞时,H'(x)→+∞,则∃x0∈(0,+∞),使H'(x0)=0进而H(x)在[0,x0)递减,在(x0,+∞)递增,所以当x∈(0,x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025标准版汽车租赁合同范本
- 2025二手车买卖交易合同范本
- 2025年个人租房合同范文
- 羽毛球知到课后答案智慧树章节测试答案2025年春山东工艺美术学院
- 2025简易办公室租赁合同
- 2024年浙大宁波理工学院招聘事业编制人员真题
- 2024年伊春市南岔县招聘社区工作者真题
- 太原境内旅游合同范本
- 2024年启东农村商业银行招聘真题
- 手绘学术论文答辩模板
- (省统测)贵州省2025年4月高三年级适应性考试(选择性考试科目)历史试卷(含答案)
- 浙江国企招聘2025宁波枢智交通科技有限公司招聘21人笔试参考题库附带答案详解
- 2022中国大连高级经理学院网络培训岗位人员公开招聘模拟检测试卷【共500题含答案解析】
- YY 0341.1-2020无源外科植入物骨接合与脊柱植入物第1部分:骨接合植入物特殊要求
- 自考04747Java语言程序设计(一)自学辅导资料
- 三级动火证 模板
- 毕业论文-基于单片机的智能浇花系统的设计与实现
- XK3168电子称重仪表技术手册
- 电梯系统质量检查记录表
- 最新山东地图含市县地图矢量分层可编辑地图PPT模板
- 机械设计齿轮机构基础
评论
0/150
提交评论