下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
...wd......wd......wd...历届高考中的“解三角形〞试题精选〔自我测试〕一、选择题:〔每题5分,计40分〕1.〔2008北京文〕△ABC中,a=,b=,B=60°,那么角A等于〔〕〔A〕135° (B)90°(C)45° (D)30°2.〔2007重庆理〕在中,则BC=〔〕A.B.C.2D.3.(2006山东文、理)在△ABC中,角A、B、C的对边分别为a、b、c,A=,a=,b=1,则c=()〔A〕1〔B〕2〔C〕—1〔D〕4.(2008福建文)在中,角A,B,C的对应边分别为a,b,c,假设,则角B的值为〔〕A. B.C.或 D.或5.〔2005春招上海〕在△中,假设,则△是〔〕〔A〕直角三角形.〔B〕等边三角形.〔C〕钝角三角形.〔D〕等腰直角三角形.6.〔2006全国Ⅰ卷文、理〕的内角A、B、C的对边分别为a、b、c,假设a、b、c成等比数列,且,则〔〕A.B.C.D.7.〔2005北京春招文、理〕在中,,那么一定是〔〕A.直角三角形B.等腰三角形C.等腰直角三角形D.正三角形8.〔2004全国Ⅳ卷文、理〕△ABC中,a、b、c分别为∠A、∠B、∠C的对边.如果a、b、c成等差数列,∠B=30°,△ABC的面积为,那么b=〔〕A.B.C.D.二.填空题:〔每题5分,计30分〕9.〔2007重庆文〕在△ABC中,AB=1,BC=2,B=60°,则AC=。10.(2008湖北文)在△ABC中,a,b,c分别是角A,B,C所对的边,则A=.11.〔2006北京理〕在中,假设,则的大小是_____.12.〔2007北京文、理)在中,假设,,,则________.13.(2008湖北理)在△ABC中,三个角A,B,C的对边边长分别为a=3,b=4,c=6,则bccosA+cacosB+abcosC的值为.14.〔2005上海理〕在中,假设,,,则的面积S=_______三.解答题:〔15、16小题每题12分,其余各题每题14分,计80分〕15.(2008全国Ⅱ卷文)在中,,.〔Ⅰ〕求的值;〔Ⅱ〕设,求的面积.16.〔2007山东文〕在中,角的对边分别为.〔1〕求;〔2〕假设,且,求.17、(2008海南、宁夏文)如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2。〔1〕求cos∠CBE的值;〔2〕求AE。18.〔2006全国Ⅱ卷文〕在,求〔1〕(2)假设点19.〔2007全国Ⅰ理〕设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求的取值范围.O北东Oy线岸OxQr(t)〕P海20.〔2003全国文、理,广东〕在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O〔如图〕的东偏南O北东Oy线岸OxQr(t)〕P海历届高考中的“解三角形〞试题精选〔自我测试〕参考答案一、选择题:〔每题5分,计40分〕二.填空题:〔每题5分,计30分〕9.;10.30°;.11.__60O_.12.;13.;14.三.解答题:〔15、16小题每题12分,其余各题每题14分,计80分〕15.解:〔Ⅰ〕由,得,由,得.所以.〔Ⅱ〕由正弦定理得.所以的面积.16.解:〔1〕 又 解得.,是锐角. .〔2〕∵,即abcosC= ,又cosC=. 又. ...17.解:〔Ⅰ〕因为,,所以.所以.〔Ⅱ〕在中,,由正弦定理.故18.解:〔1〕由由正弦定理知〔2〕,由余弦定理知19.解:〔Ⅰ〕由,根据正弦定理得,所以,由为锐角三角形得.〔Ⅱ〕.由为锐角三角形知,,.解得所以,所以.由此有,所以,的取值范围为.20.解:设在t时刻台风中心位于点Q,此时|OP|=300,|PQ|=20t,台风侵袭范围的圆形区域半径为r(t)=10t+60,O北东Oy线岸O北东Oy线岸OxQr(t)〕P海cos∠OPQ=cos(θ-45o)=cosθcos45o+sinθsin45o=在△OPQ中,由余弦定理,得==假设城市O受到台风的侵袭,则有|OQ|≤r(t),即,整理,得,解得12≤t≤24,答:12小时后该城市开场受到台风的侵袭.1.正弦定理:2.余弦定理:a2=b2+c2-2bccosA,;3.射影定理:a=bcosC+ccosB;b=acosC+ccosA;c=acosB+bcosA4.〔1〕内角和定理:A+B+C=180°,sin(A+B)=sinC,cos(A+B)=-cosC,cos=sin,sin=cos〔2〕面积公式:S=absinC=bcsinA=casinB5.利用正弦定理,可以解决以下两类问题:〔1〕两角和任一边,求其他两边和一角;〔2〕两边和其中一边的对角,求另一边的对角;有三种情况:bsinA<a<b时有两解;a=bsinA或a=b时有解;a<bsinA时无解。6.利用余
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江理工大学《语文教学理论与实践(1)》2023-2024学年第一学期期末试卷
- 郑州轻工业大学《软件开发管理程》2023-2024学年第一学期期末试卷
- 小学学校章程
- 浙江电力职业技术学院《电视原理B》2023-2024学年第一学期期末试卷
- 漳州职业技术学院《信号与系统》2023-2024学年第一学期期末试卷
- 生产调度与库存管理协同效应
- 财务年终总结报告模板
- 双十一新媒体营销报告模板
- 生物医疗研究总结模板
- 房地产交易制度政策-《房地产基本制度与政策》模拟试卷2
- DB11∕T 353-2021 城市道路清扫保洁质量与作业要求
- 中医特色科室创建
- 多旋翼无人机驾驶员执照(CAAC)备考试题库大全-上部分
- Unit 2 同步练习人教版2024七年级英语上册
- JGJ94-2008建筑桩基技术规范
- 电子产品模具设计
- (正式版)JBT 11270-2024 立体仓库组合式钢结构货架技术规范
- 失能老年人的护理与康复
- 微信小程序运营投标方案(技术方案)
- 布氏杆菌脊柱炎的护理
- 教育培训行业跨学科教育发展
评论
0/150
提交评论