专题12.16 三角形全等几何模型(半角模型)(精练)(专项练习)(学生版) 2024-2025学年八年级数学上册基础知识专项突破讲与练(人教版)_第1页
专题12.16 三角形全等几何模型(半角模型)(精练)(专项练习)(学生版) 2024-2025学年八年级数学上册基础知识专项突破讲与练(人教版)_第2页
专题12.16 三角形全等几何模型(半角模型)(精练)(专项练习)(学生版) 2024-2025学年八年级数学上册基础知识专项突破讲与练(人教版)_第3页
专题12.16 三角形全等几何模型(半角模型)(精练)(专项练习)(学生版) 2024-2025学年八年级数学上册基础知识专项突破讲与练(人教版)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

试卷第=page11页,共=sectionpages33页专题12.16三角形全等几何模型(半角模型)(精选精练)(专项练习)1.如图,在正方形ABCD中,点P在直线BC上,作射线AP,将射线AP绕点A逆时针旋转45°,得到射线AQ,交直线CD于点Q,过点B作BE⊥AP于点E,交AQ于点F,连接DF.(1)依题意补全图形;(2)用等式表示线段BE,EF,DF之间的数量关系,并证明.2.如图,是边长为3的等边三角形,是等腰三角形,且,以为顶点作一个角,使其两边分别交于点,交于点,连接,求的周长.3.(23-24八年级上·河南漯河·阶段练习)如图,在四边形中,,,、分别是边、上的点,.(1)求证:.(2)求证:平分.4.问题背景:如图1:在四边形中,,,.,分别是,上的点,且.探究图中线段,,之间的数量关系.(1)小王同学探究此问题的方法是:延长到点,使.连接,先证明,再证明,他的结论应是;(并写出证明过程)探索延伸:(2)如图2,若在四边形中,,,,分别是,上的点,且是的二分之一,上述结论是否仍然成立,并说明理由.5.(22-23九年级下·山东滨州·期中)(1)如图1,在四边形中,,,且,求证:.(2)如图2,若在四边形中,,,分别是上的点,且,上述结论是否仍然成立?请说明理由.6.【问题引领】问题1:如图1.在四边形中,,,.E,F分别是,上的点.且.探究图中线段,,之间的数量关系.小王祠学探究此问题的方法是,延长到点G.使.连接.先证明,再证明.他得出的正确结论是______.【探究思考】问题2:如图2,若将问题Ⅰ的条件改为:四边形中,,,,问题1的结论是否仍然成立?请说明理由.【拓展延伸】问题3:如图3在问题2的条件下,若点E在AB的延长线上,点F在的延长线上,则问题2的结论是否仍然成立?若不成立,猜测此时线段,,之间存在的等量关系是______.

7.()如图:在四边形中,,,.,分别是,上的点.且.探究图中线段,,之间的数量关系.小明同学探究的方法是:延长到点.使,连接,先证明,再证明,可得出结论,他的结论是________(直接写结论,不需证明);

(2)如图,若在四边形中,,,、分别是,上的点,且是的二分之一,上述结论是否仍然成立,并说明理由;

(3)如图,四边形是边长为的正方形,,直接写出三角形的周长.

8.(23-24八年级上·北京朝阳·阶段练习)在中,,点是直线上一点(不与重合),以为一边在的右侧作,使.设.(1)如图1,如果___________度;(2)如图2,你认为之间有怎样的数量关系?并说明理由.(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论