版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教A版(新教材)高中数学选择性必修第三册PAGEPAGE1§8.3列联表与独立性检验学习目标1.通过实例,理解2×2列联表的统计意义.2.通过实例,了解2×2列联表独立性检验及其应用.知识梳理知识点一分类变量为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用表示.知识点二2×2列联表1.2×2列联表给出了成对分类变量数据的.2.定义一对分类变量X和Y,我们整理数据如下表所示:XY合计Y=0Y=1X=0aba+bX=1cdc+d合计a+cb+dn=a+b+c+d像这种形式的数据统计表称为2×2列联表.知识点三独立性检验1.定义:利用χ2的取值推断分类变量X和Y的方法称为χ2独立性检验,读作“卡方独立性检验”.简称独立性检验.2.χ2=,其中n=a+b+c+d.3.独立性检验解决实际问题的主要环节(1)提出零假设H0:X和Y相互独立,并给出在问题中的解释.(2)根据抽样数据整理出2×2列联表,计算χ2的值,并与临界值xα比较.(3)根据检验规则得出推断结论.(4)在X和Y不独立的情况下,根据需要,通过比较相应的频率,分析X和Y间的影响规律.思考独立性检验与反证法的思想类似,那么独立性检验是反证法吗?题型探究探究一等高堆积条形图的应用例1.研究人员选取170名青年男女大学生,对他们进行一种心理测验.发现60名女生对该心理测验中的最后一个题目的反应是:作肯定的有18名,否定的有42名.110名男生在相同的题目上作肯定的有22名,否定的有88名.试判断性别与态度之间是否有关系.反思感悟等高堆积条形图的优劣点(1)优点:较直观地展示了eq\f(a,a+b)与eq\f(c,c+d)的差异性.(2)劣点:不能给出推断“两个分类变量有关系”犯错误的概率.跟踪训练1.为了解铅中毒病人与尿棕色素为阳性是否有关系,分别对病人组和对照组的尿液作尿棕色素定性检查,结果如下:组别阳性数阴性数总计铅中毒病人29736对照组92837总计383573试画出列联表的等高条形图,分析铅中毒病人和对照组的尿棕色素阳性数有无差别,铅中毒病人与尿棕色素为阳性是否有关系?探究二由χ2进行独立性检验命题角度1有关“相关的检验”例2.在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中,有175人秃顶.根据以上数据判断男性病人的秃顶与患心脏病是否有关系?反思感悟用χ2进行“相关的检验”步骤(1)零假设:即先假设两变量间没关系.(2)计算χ2:套用χ2的公式求得χ2值.(3)查临界值:结合所给小概率值α查得相应的临界值xα.(4)下结论:比较χ2与xα的大小,并作出结论.跟踪训练2.某矿石粉厂当生产一种矿石粉时,在数天内即有部分工人患职业性皮肤炎,在生产季节开始,随机抽取75名车间工人穿上新防护服,其余仍穿原用的防护服,生产进行一个月后,检查两组工人的皮肤炎患病人数如下:阳性例数阴性例数合计新防护服57075旧防护服101828合计1588103问这种新防护服对预防工人患职业性皮肤炎是否有效?并说明你的理由.命题角度2有关“无关的检验”例3.为了研究学生选报文、理科是否与对外语的兴趣有关,某同学调查了361名高一在校生,调查结果如下:理科对外语有兴趣的有138人,无兴趣的有98人,文科对外语有兴趣的有73人,无兴趣的有52人.试分析学生选报文、理科与对外语的兴趣是否有关?反思感悟独立性检验解决实际问题的主要环节(1)提出零假设H0:X和Y相互独立,并给出在问题中的解释.(2)根据抽样数据整理出2×2列联表,计算χ2的值,并与临界值xα比较.(3)根据检验规则得出推断结论.(4)在X和Y不独立的情况下,根据需要,通过比较相应的频率,分析X和Y间的影响规律.跟踪训练3.考察棉花种子处理情况跟生病之间的关系得到下表数据:种子种子合计处理未处理得病32101133不得病61213274合计93314407根据以上数据,可得出()A.种子是否经过处理跟生病有关B.种子是否经过处理跟生病无关C.种子是否经过处理决定是否生病D.以上都是错误的课堂小结1.知识清单:(1)分类变量.(2)2×2列联表.(3)等高堆积条形图.(4)独立性检验,χ2公式.2.方法归纳:数形结合.3.常见误区:对独立性检验的原理不理解,导致不会用χ2分析问题.随堂自测1.已知变量X和Y的列联表如下,则()YXy1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+dA.ad-bc越小,说明X与Y的关系越弱B.ad-bc越大,说明X与Y的关系越强C.(ad-bc)2越大,说明X与Y的关系越强D.(ad-bc)2越接近于0,说明X与Y的关系越强2.想要检验是否参加体育运动是不是与性别有关,应该检验()A.男性喜欢参加体育运动B.女性不喜欢参加体育运动C.喜欢参加体育运动与性别有关D.喜欢参加体育运动与性别无关3.在2×2列联表中,若每个数据变为原来的2倍,则χ2的值变为原来的________倍.4.下列说法正确的是________.(填序号)①对事件A与B的检验无关,即两个事件互不影响;②事件A与B关系越密切,χ2就越大;③χ2的大小是判断事件A与B是否相关的唯一数据;④若判定两事件A与B有关,则A发生B一定发生.5.为了判断高中三年级学生选修文科是否与性别有关,现随机抽取50名学生,得到如下2×2列联表:理科文科合计男131023女72027合计203050已知P(χ2≥3.841)≈0.05,P(χ2≥5.024)≈0.025,根据表中数据得到χ2=eq\f(50×(13×20-10×7)2,23×27×20×30)≈4.844.则有__________的把握认为选修文科与性别有关.6.在2×2列联表中,两个比值eq\f(a,a+b)与________相差越大,两个分类变量有关系的可能性越大.7.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生602080北方学生101020合计7030100根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.▁▃▅▇█参*考*答*案█▇▅▃▁知识梳理知识点一分类变量实数知识点二2×2列联表1.交叉分类频数知识点三独立性检验1.是否独立2.eq\f(n(ad-bc)2,(a+b)(c+d)(a+c)(b+d))思考〖答案〗不是.因为反证法不会出错,而独立性检验依据的是小概率事件几乎不发生.题型探究例1.解:根据题目所给数据建立如下列联表:肯定否定总计女生184260男生2288110总计40130170相应的等高条形图如图所示.比较来看,女生中肯定的人数比要高于男生中肯定的人数比,因此可以在某种程度上认为性别与态度之间有关.跟踪训练1.解:等高条形图如图所示:其中两个浅色条的高分别代表铅中毒病人和对照组样本中尿棕色素为阳性的频率.由图可以直观地看出铅中毒病人与对照组相比,尿棕色素为阳性的频率差异明显,因此铅中毒病人与尿棕色素为阳性有关系.例2.解:提出假设H0:男性病人的秃顶与患心脏病没有关系.根据题中所给数据得到如下2×2列联表:患心脏病未患心脏病合计秃顶214175389不秃顶4515971048合计6657721437根据列联表中的数据可以求得χ2=eq\f(1437×(214×597-175×451)2,389×1048×665×772)≈16.373.因为当H0成立时,χ2≥10.828的概率约为0.001,而这里χ2≈16.373>10.828,所以有99.9%的把握认为,男性病人的秃顶与患心脏病有关系.跟踪训练2.解:提出假设H0:新防护服对预防皮肤炎没有明显效果.根据列联表中的数据可求得χ2=eq\f(103×(5×18-70×10)2,75×28×15×88)≈13.826.因为H0成立时,χ2≥10.828的概率约为0.001,而这里χ2≈13.826>10.828,所以我们有99.9%的把握说新防护服比旧防护服对预防工人患职业性皮肤炎有效.例3.解:问题是判断学生选报文、理科是否与对外语的兴趣有关.列出2×2列联表如下:理文总计有兴趣13873211无兴趣9852150总计236125361由公式得K2的观测值k=eq\f(361×(138×52-73×98)2,236×125×211×150)≈1.871×10-4.因为1.871×10-4<2.706,故可以认为学生选报文、理科与对外语的兴趣无关.跟踪训练3.〖答案〗B〖解析〗由χ2=eq\f(407×(32×213-61×101)2,93×314×133×274)≈0.164<2.706=x0.1,即没有把握认为种子是否经过处理跟生病有关.当堂检测1.〖答案〗C〖解析〗χ2=eq\f(n(ad-bc)2,(a+b)(c+d)(a+c)(b+d))(其中n=a+b+c+d),若(ad-bc)2越大,则χ2越大,说明X与Y的关系越强.2.〖答案〗D〖解析〗独立性检验假设有反证法的意味,应假设两类变量(而非变量属性)无关,这时的χ2应该很小,如果χ2很大,则可以否定假设,如果χ2很小,则不能够肯定或者否定假设.3.〖解析〗由公式χ2=eq\f(n(ad-bc)2,(a+b)(c+d)(a+c)(b+d))中所有值变为原来的2倍,得(χ2)′=eq\f(2n(2a·2d-2b·2c)2,(2a+2b)(2c+2d)(2a+2c)(2b+2d))=2χ2,故χ2也变为原来的2倍.〖答案〗24.〖解析〗对于①,事件A与B的检验无关,只是说两事件的相关性较小,并不一定两事件互不影响,故①错.②是正确的.对于③,判断A与B是否相关的方式很多,可以用列联表,也可以借助于概率运算,故③错.对于④,两事件A与B有关,说明两者同时发生的可能性相对来说较大,但并不是A发生B一定发生,故④错.〖答案〗②5.〖答案〗95%6.〖解析〗根据2×2列联表可知,比值eq\f(a,a+b)与eq\f(c,c+d)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安装工程合同的工程质量保修3篇
- 文明迟到保证书样本3篇
- 房屋买卖合同英文版深度解析3篇
- 房屋买卖合同被判无效后的维权途径3篇
- 教育培训行业教育咨询师聘用协议3篇
- 污水处理厂泵站维护合同
- 征收土地补偿协议书
- 重庆市户外广告租赁合同
- 重庆川菜火锅店装修施工合同
- 体育馆楼面信息化施工协议
- 物流公司自然灾害、突发性事件应急预案(2篇)
- 《视频拍摄与制作:短视频 商品视频 直播视频(第2版)》-课程标准
- 公司战略与风险管理战略实施
- 2024年-2025年《农作物生产技术》综合知识考试题库及答案
- 广东省广州市白云区2022-2023学年八年级上学期物理期末试卷(含答案)
- 医学细胞生物学(温州医科大学)知到智慧树章节答案
- XX小区春节灯光布置方案
- 诚信讲堂课件教学课件
- 2024年二级建造师考试建筑工程管理与实务试题及解答参考
- 2024年江苏省普通高中学业水平信息技术综合分析试卷(一)(含答案)
- 生产车间关键岗位培训
评论
0/150
提交评论