第十五章 分式(10个知识归纳)_第1页
第十五章 分式(10个知识归纳)_第2页
第十五章 分式(10个知识归纳)_第3页
第十五章 分式(10个知识归纳)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十五章分式(知识归纳)一、分式的定义分式:一般地,整式A除以整式B,可以表示成的形式,如果除式B中含有字母,那么称为分式.分式中,A叫做分子,B叫做分母.注:=1\*GB3①分式可以理解为两个整式相除的商,分母是除数,分子是被除数,分数线是除号。=2\*GB3②整式B作为分母,则整式B0.=3\*GB3③只要最终能转化为形式即可.=4\*GB3④B中若无字母,则变成系数乘A,为整式.二、分式的相关概念(1)分式有意义的条件:分母不为0,即B0(2)分式的值为0的条件:分子为0,且分母不为0,即A=0且B0(3)分式为正的条件:分子与分母的积为正,即AB>0(4)分式为负的条件:分子与分母的积为负,即AB<0三、分式的基本性质(1)分数的性质(特点)如下:=1\*GB3①分母不能为零;=2\*GB3②分数分子分母同乘除不为零的数,分数的大小不变;=3\*GB3③分数的通分与约分(短除法).(2)分式是分数的拓展延伸,分式有与分数类似的性质(特点):=1\*GB3①分式分母也不能为零=2\*GB3②分式分子分母同乘除一个不为零的整式,分式大小不变。即:用式子表示为或,其中A,B,C均为整式.=3\*GB3③分式的通分与约分在知识点4中详细讲解.四、分式的约分与通分(1)分式的约分:与分数的约分类似,约去分式分子、分母中的公因式(最大公约数).注:有时,分式分子、分母需进行一定的转换才有公因式。(2)最简分式:分子、分母没有公因式的分式叫做最简分式.注:约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式.(3)分式的通分:利用分式的性质,将分式的分母变成最小公倍数,分子根据分母扩大的倍数相应扩大,不改变分式的值。步骤:=1\*GB3①通过短除法,求出分式分母的最小公倍数;=2\*GB3②分母变为最小公倍数的值,确定原式分母扩大的倍数;=3\*GB3③分子对应扩大相同倍数.(4)最简公分母:几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母.五、分式的混合运算分式是分数的扩展,因此分式的运算法则与分数的运算法则类似:(1)分式的加减①同分母的分式相加减法则:分母不变,分子相加减.用式子表示为:.②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减.用式子表示为:.(2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:.(3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘.用式子表示为:.(4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:为正整数,.(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.注:上述所有计算中,结果中分子、分母可约分的,需进行约分化为最简分式六、整数指数幂(幂的运算的扩大)(1)前面已学习:=1\*GB3①am∙an=am+n,(m,n是正整数);=2\*GB3②(am)=3\*GB3③(ab)m=ambm,(m是正整数);=4\*GB3④am÷an=am−n,(a≠0,m=5\*GB3⑤(ab)n=anbn,(n是正整数);=6\*GB3若按照=4\*GB3④运算,当m<n时。如:a2÷a3=(2)针对这种现象,我们规定,当n为正整数时,a−n=1a(3)幂的运算性质扩大当a≠0时=1\*GB3①am∙an=2\*GB3②(am)n=3\*GB3③(ab)m=am(4)利用负指数化除为乘,设m,n为正整数,a≠0,根据定义am÷a(5)科学记数法的扩大一般,一个小于1的数可以表示为a×10−n的形式,其中步骤:确定a值的大小。1<a<10;确定n的值。原数变为a后,小数点向前移动x位,则原数相应扩大了10x倍。故n七、分式方程的概念分母中含有未知数的方程叫做分式方程.注意:“分母中含有未知数”是分式方程与整式方程的根本区别,也是判定一个方程为分式方程的依据.八、分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母.(2)解分式方程的步骤:①找最简公分母,当分母是多项式时,先分解因式;②去分母,方程两边都乘最简公分母,约去分母,化为整式方程;③解整式方程;④验根.注意:解分式方程过程中,易错点有:①去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项;②忘记验根,最后的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.九、增根在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.由于可能产生增根,所以解分式方程要验根,其方法是将根代入最简公分母中,使最简公分母为零的根是增根,否则是原方程的根.注意:增根虽然不是方程的根,但它是分式方程去分母后变形而成的整式方程的根.若这个整式方程本身无解,当然原分式方程就一定无解.十、分式方程的应用(1)分式方程的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论