2025《初中数学》专题突破专题67 反比例函数背景下的全等、相似问题(含答案及解析)_第1页
2025《初中数学》专题突破专题67 反比例函数背景下的全等、相似问题(含答案及解析)_第2页
2025《初中数学》专题突破专题67 反比例函数背景下的全等、相似问题(含答案及解析)_第3页
2025《初中数学》专题突破专题67 反比例函数背景下的全等、相似问题(含答案及解析)_第4页
2025《初中数学》专题突破专题67 反比例函数背景下的全等、相似问题(含答案及解析)_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

例题精讲例题精讲考点1反比例函数与全等三角形综合问题【例1】.如图,把一个等腰直角三角形放在平面直角坐标系中,∠ACB=90°,点C(﹣1,0),点B在反比例函数y=的图象上,且y轴平分∠BAC,则k的值是________变式训练【变1-1】.如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠BAC=30°,点A的坐标为(﹣3,0),将△ABC沿直线AC翻折,点B的对应点D恰好落在反比例函数的图象上,则k的值为()A. B.﹣2 C.4 D.﹣4【变1-2】.如图,点A是反比例函数y=图象上的一动点,连接AO并延长交图象的另一支于点B.在点A的运动过程中,若存在点C(m,n),使得AC⊥BC,AC=BC,则m,n满足_______(填等量关系)考点2反比例函数与相似三角形综合问题【例2】.如图,在平面直角坐标系中,四边形AOBD的边OB与x轴的正半轴重合,AD∥OB,DB⊥x轴,对角线AB,OD交于点M.已知AD:OB=2:3,△AMD的面积为4.若反比例函数y=的图象恰好经过点M,则k的值为()A. B. C. D.12变式训练【变2-1】.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,=,则k的值为()A. B.﹣ C.﹣ D.﹣3【变2-2】.如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线的图象经过点A,若S△BEC=8,则k等于()A.8 B.16 C.24 D.28【变2-3】.如图,在等腰△AOB中,AO=AB,顶点A为反比例函数y=(x>0)图象上一点,点B在x轴的正半轴上,过点B作BC⊥OB,交反比例函数y=的图象上于点C,连接OC交AB于点D,若△BCD的面积为2,则k的值为()A.18 B.20 C.22 D.211.如图,AB⊥x轴,B为垂足,双曲线y=(x>0)与△AOB的两条边OA,AB分别相交于C,D两点,OC=CA,且△ABC的面积为3,则k等于()A.4 B.2 C.3 D.12.如图,在△ABC中,AB=AC,点A在反比例函数y=(k>0,x>0)的图象上,点B,C在x轴上,OC=OB,延长AC交y轴于点D,连接BD,若△BCD的面积等于1,则k的值为()A.3 B.2 C. D.43.如图所示,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y=﹣(x<0)的图象上,则tan∠BAO的值为()A. B. C. D.4.如图,函数y=﹣(x<0)的图象经过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连接AD.若AD=3,则△ABO的周长为()A.12 B.6+ C.6+2 D.6+25.如图,长方形ABCD的顶点A、B均在y轴的正半轴上,点C在反比例函数y=(x>0)的图象上,对角线DB的延长线交x轴于点E,连接AE,已知S△ABE=1,则k的值是()A.1 B. C.2 D.46.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P,若OP=,则k的值为.7.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为.8.在平面直角坐标系xOy中,点A,B在反比例函数y=(x>0)的图象上,且点A与点B关于直线y=x对称,C为AB的中点,若AB=4,则线段OC的长为.9.如图,△OMN是边长为10的等边三角形,反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为.10.如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数y=图象上,且y轴平分∠ACB,求k=.11.如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若△OEC的面积为12,则k=.12.如图,在平面直角坐标系中,∠OAB=60°,∠AOB=90°,反比例函数y1=的图象经过点A,反比例函数y2=﹣的图象经过点B,则m的值为.13.如图,线段OA与函数y=(x>0)的图象交于点B,且AB=2OB,点C也在函数y=(x>0)图象上,连结AC并延长AC交x轴正半轴于点D,且AC=3CD,连结BC,若△BCD的面积为3,则k的值为.14.如图,在平面直角坐标系中,点A、B在函数y=(k>0,x>0)的图象上,过点A作x轴的垂线,与函数y=﹣(x>0)的图象交于点C,连接BC交x轴于点D.若点A的横坐标为1,BC=3BD,则点B的横坐标为.15.如图,在△ABC中,边AB在x轴上,边AC交y轴于点E.反比例函数y=(x>0)的图象恰好经过点C,与边BC交于点D.若AE=CE,CD=2BD,S△ABC=6,则k=.16.如图,A为反比例函数(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2.过点B作BC⊥OB,交反比例函数(其中x>0)的图象于点C,连接OC交AB于点D,则的值为.17.如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y=和y=(k<0)上,=,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为.18.如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l交于点C,D,且∠COD=45°,则k=.19.如图,平行四边形ABCD的顶点C在y轴正半轴上,CD平行于x轴,直线AC交x轴于点E,BC⊥AC,连接BE,反比例函数y=(x>0)的图象经过点D,已知S△BCE=2,则k的值是.20.如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB.过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,则的值为.21.如图,点A在反比例函数第一象限内图象上,点B在反比例函数第三象限内图象上,AC⊥y轴于点C,BD⊥y轴于点D,交于点E,若BO=CE,则k的值为.22.如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,AE⊥BC于E点,交BD于M点,反比例函数的图象经过线段DC的中点N,若BD=4,则ME的长为.23.如图,平面坐标系中,AB交矩形ONCM于E、F,若=(m>1),且双曲线y=也过E、F两点,记S△CEF=S1,S△OEF=S2,用含m的代数式表示.24.如图,在平面直角坐标系中,点P、Q在函数y=(x>0)的图象上,PA、QB分别垂直x轴于点A、B,PC、QD分别垂直y轴于点C、D.设点P的横坐标为m,点Q的纵坐标为n,△PCD的面积为S1,△QAB的面积为S2.(1)当m=2,n=3时,求S1、S2的值;(2)当△PCD与△QAB全等时,若m=3,直接写出n的值.25.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(1,2)、B(﹣2,n)两点.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b>的x的取值范围;(3)若点P在线段AB上,且S△AOP:S△BOP=1:4,求点P的坐标.26.如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=(k>0)的图象经过点D且与边BA交于点E,连接DE.(1)连接OE,若△EOA的面积为2,则k=;(2)连接CA、DE与CA是否平行?请说明理由;(3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.27.如图,点A和点E(2,1)是反比例函数y=(x>0)图象上的两点,点B在反比例函数y=(x<0)的图象上,分别过点A、B作y较的垂线,垂足分别为点C、D,AC=BD,连接AB交y轴于点F.(1)求k;(2)设点A的横坐标为a,点F的纵坐标为m,求证:am=﹣2.(3)连接CE、DE,当∠CED=90°时,求A的坐标.28.已知在平面直角坐标系xOy中,点A是反比例函数y=(x>0)图象上的一个动点,连结AO,AO的延长线交反比例函数y=(k>0,x<0)的图象于点B,过点A作AE⊥y轴于点E.(1)如图1,过点B作BF⊥x轴,于点F,连接EF.①若k=1,求证:四边形AEFO是平行四边形;②连结BE,若k=4,求△BOE的面积.(2)如图2,过点E作EP∥AB,交反比例函数y=(k>0,x<0)的图象于点P,连结OP.试探究:对于确定的实数k,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由.

例题精讲例题精讲考点1反比例函数与全等三角形综合问题【例1】.如图,把一个等腰直角三角形放在平面直角坐标系中,∠ACB=90°,点C(﹣1,0),点B在反比例函数y=的图象上,且y轴平分∠BAC,则k的值是________解:如图,过点B作BD⊥x轴于D,在OA上截取OE=OC,连接CE,∵点C(﹣1,0),∴CO=1,∴CO=EO=1,∴∠CEO=45°,CE=,∵△BAC为等腰直角三角形,且∠ACB=90°,∴BC=AC,∠OCA+∠DCB=90°,∠CAB=45°,∵∠OCA+∠OAC=90°,∴∠OAC=∠BCD,在△OAC和△DCB中,∴△OAC≌△DCB(AAS),∴AO=CD,OC=BD=1,∵y轴平分∠BAC,∴∠CAO=22.5°,∵∠CEO=∠CEA+∠OAC=45°,∴∠ECA=∠OAC=22.5°,∴CE=AE=,∴AO=1+=CD,∴DO=,∴点B坐标为(,﹣1),∵点B在反比例函数y=的图象上,∴k=﹣1×=﹣,变式训练【变1-1】.如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,点C在y轴上,∠BAC=30°,点A的坐标为(﹣3,0),将△ABC沿直线AC翻折,点B的对应点D恰好落在反比例函数的图象上,则k的值为()A. B.﹣2 C.4 D.﹣4解:如图,过点D作DE⊥y轴于点E.由对称可知CD=BC,易证△DCE≌△BCO(AAS),∴CE=CO,DE=OB,∵∠BAC=30°,OA=3∴OC=OA=,∠OCB=30°,∴OB=OC=1,∴DE=OB=1,CE=OC=,OE=2,|k|=DE•OE=1×2=2,∵反比例函数图象在第二象限,∴k=﹣2,故选:B.【变1-2】.如图,点A是反比例函数y=图象上的一动点,连接AO并延长交图象的另一支于点B.在点A的运动过程中,若存在点C(m,n),使得AC⊥BC,AC=BC,则m,n满足_______(填等量关系)解:如图,连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,∵由直线AB与反比例函数y=的对称性可知A、B点关于O点对称,∴AO=BO.又∵AC⊥BC,AC=BC,∴CO⊥AB,CO=AB=OA,∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴△AOE≌△COF(AAS),∴OE=OF,AE=CF,∵点C(m,n),∴CF=﹣m,cF=n,∴OE=﹣m,AE=n,∴A(﹣m,n),∵点A是反比例函数y=图象上,∴﹣mn=4,即mn=﹣4,考点2反比例函数与相似三角形综合问题【例2】.如图,在平面直角坐标系中,四边形AOBD的边OB与x轴的正半轴重合,AD∥OB,DB⊥x轴,对角线AB,OD交于点M.已知AD:OB=2:3,△AMD的面积为4.若反比例函数y=的图象恰好经过点M,则k的值为()A. B. C. D.12解:过点M作MH⊥OB于H.∵AD∥OB,∴△ADM∽△BOM,∴=()2=,∵S△ADM=4,∴S△BOM=9,∵DB⊥OB,MH⊥OB,∴MH∥DB,∴===,∴OH=OB,∴S△MOH=×S△OBM=,∵=,∴k=,故选:B.变式训练【变2-1】.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,=,则k的值为()A. B.﹣ C.﹣ D.﹣3解:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=()2=()2=,又∵S△AOC=×4=2,∴S△OBD=,∴k=﹣.故选:B.【变2-2】.如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线的图象经过点A,若S△BEC=8,则k等于()A.8 B.16 C.24 D.28解:∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC,∠DBC=∠ACB,又∠DBC=∠EBO,∴∠EBO=∠ACB,又∠BOE=∠CBA=90°,∴△BOE∽△CBA,∴=,即BC×OE=BO×AB.又∵S△BEC=8,即BC×OE=2×8=16=BO×AB=|k|.又由于反比例函数图象在第一象限,k>0.所以k等于16.故选:B.【变2-3】.如图,在等腰△AOB中,AO=AB,顶点A为反比例函数y=(x>0)图象上一点,点B在x轴的正半轴上,过点B作BC⊥OB,交反比例函数y=的图象上于点C,连接OC交AB于点D,若△BCD的面积为2,则k的值为()A.18 B.20 C.22 D.21解:如图,过点A作AF⊥OB交x轴于F,交OC于点E,∵OA=AB,AF⊥OB,∴OF=FB=OB,∵BC⊥OB,∴AF∥BC,∴△ADE∽△BDC,,∴BC=2EF,设OF=a,则OB=2a,∴A(a,),C(2a,),∴AF=,BC=,∴AF=2BC=4EF,AE=AF﹣EF=3EF,∵△ADE∽△BDC,∴,∴=()2=,∵△BCD的面积为2,∴S△ADE=,∴=,∵=,∴EC=OE,∴=,∴=,∴S△AOE=,∵==,∴==,∴S△AOF=S△AOE=×=10,∴|k|=10,∵k>0,∴k=20.故选:B.1.如图,AB⊥x轴,B为垂足,双曲线y=(x>0)与△AOB的两条边OA,AB分别相交于C,D两点,OC=CA,且△ABC的面积为3,则k等于()A.4 B.2 C.3 D.1解:连接BC,过点C作CM⊥OB于M,∵OC=CA,即=,∴==,又∵△ABC的面积为3,∴S△OBC=,又∵CM∥AB,∴==,∴==,∴S△OMC=S△OBC==|k|,∵k>0,∴k=1,故选:D.2.如图,在△ABC中,AB=AC,点A在反比例函数y=(k>0,x>0)的图象上,点B,C在x轴上,OC=OB,延长AC交y轴于点D,连接BD,若△BCD的面积等于1,则k的值为()A.3 B.2 C. D.4解:作AE⊥BC于E,连接OA,∵AB=AC,∴CE=BE,∵OC=OB,∴OC=BC=×2CE=CE,∵AE∥OD,∴△COD∽△CEA,∴=()2=4,∵△BCD的面积等于1,OC=OB,∴S△COD=S△BCD=,∴S△CEA=4×=1,∵OC=CE,∴S△AOC=S△CEA=,∴S△AOE=+1=,∵S△AOE=k(k>0),∴k=3,故选:A.3.如图所示,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y=﹣(x<0)的图象上,则tan∠BAO的值为()A. B. C. D.解:作AC⊥x轴于C,BD⊥x轴于D,如图,∵顶点A,B分别在反比例函数y=(x>0)与y=﹣(x<0)的图象上,∴S△AOC=×|1|=,S△BOD=×|﹣5|=,∵∠AOB=90°,∴∠BOD+∠AOC=90°,∵∠AOC+∠OAC=90°,∴∠OAC=∠BOD,而∠ACO=∠BDO,∴△AOC∽△OBD,∴=()2==,∴=,在Rt△AOB中,tan∠BAO==,故选:B.4.如图,函数y=﹣(x<0)的图象经过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连接AD.若AD=3,则△ABO的周长为()A.12 B.6+ C.6+2 D.6+2解:如图,过点D作DE⊥AO于E,∵点D是BO的中点,∴AD=BD=DO=3,∴BO=6,∵DE⊥AO,AB⊥AO,∴AB∥DE,∴,∴AB=2DE,AO=2EO,∵S△DEO=DE×EO=,∴S△ABO=AB×AO=2,∵AB2+AO2=OB2=36,∴(AB+AO)2=36+8,∴AB+AO=2,∴△ABO的周长=AO+BO+AB=6+2,故选:D.5.如图,长方形ABCD的顶点A、B均在y轴的正半轴上,点C在反比例函数y=(x>0)的图象上,对角线DB的延长线交x轴于点E,连接AE,已知S△ABE=1,则k的值是()A.1 B. C.2 D.4解:延长DC与x轴交于点F,∵ABCD是矩形,∴AD=BC,AD∥BC∥OE,∴△ABD∽△OBE,∴=,即:AD•OB=AB•OE,又∵S△ABE=1=AB•OE,∴AD•OB=AB•OE=2=BC•OB,即:S矩形OBCF=BC•OB=2=|k|,∴k=2或k=﹣2(舍去),故选:C.6.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P,若OP=,则k的值为3.解:设点P(m,m+2),∵OP=,∴=,解得m1=1,m2=﹣3(不合题意舍去),∴点P(1,3),∴3=,解得k=3.故答案为:3.7.已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为y=.解:∵一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,∴A(﹣2,0),B(0,4),过C作CD⊥x轴于D,∴OB∥CD,∴△ABO∽△ACD,∴==,∴CD=6,AD=3,∴OD=1,∴C(1,6),设反比例函数的解析式为y=,∴k=6,∴反比例函数的解析式为y=.故答案为:y=.8.在平面直角坐标系xOy中,点A,B在反比例函数y=(x>0)的图象上,且点A与点B关于直线y=x对称,C为AB的中点,若AB=4,则线段OC的长为2.解:设A(t,),∵点A与点B关于直线y=x对称,∴B(,t),∵AB=4,∴(t﹣)2+(﹣t)2=42,即t﹣=2或t﹣=﹣2,解方程t﹣=﹣2,得t=﹣﹣2(由于点A在第一象限,所以舍去)或t=﹣+2,经检验,t=﹣+2,符合题意,∴A(﹣+2,+2),B(+2,﹣+2),∵C为AB的中点,∴C(2,2),∴OC==2.故答案为2.9.如图,△OMN是边长为10的等边三角形,反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为9.解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,如图,∵△OMN是边长为10的等边三角形,∴OM=ON=MN=10,∠MON=∠M=∠MNO=60°设OC=b,则BC=,OB=2b,∴BM=OM﹣OB=10﹣2b,B(b,b),∵∠M=60°,AB⊥OM,∴AM=2BM=20﹣4b,∴AN=MN﹣AM=10﹣(20﹣4b)=4b﹣10,∵∠AND=60°,∴DN==2b﹣5,AD=AN=2b﹣5,∴OD=ON﹣DN=15﹣2b,∴A(15﹣2b,2b﹣5),∵A、B两点都在反比例函数y=(x>0)的图象上,∴k=(15﹣2b)(2b﹣5)=b•b,解得b=3或5,当b=5时,OB=2b=10,此时B与M重合,不符题意,舍去,∴b=3,∴k=b•b=9,故答案为:9.10.如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数y=图象上,且y轴平分∠ACB,求k=.解:过A作AE⊥x轴,垂足为E,∵C(0,﹣3),∴OC=3,∵∠AED=∠COD=90°,∠ADE=∠CDO∴△ADE∽△CDO,∴,∴AE=1;又∵y轴平分∠ACB,CO⊥BD,∴BO=OD,∵∠ABC=90°,∴∠OCD=∠DAE=∠ABE,∴△ABE∽△DCO,∴设DE=n,则BO=OD=3n,BE=7n,∴,∴n=∴OE=4n=∴A(,1)∴k=.故答案为:.11.如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若△OEC的面积为12,则k=12.解:如图,过点D、E分别作x轴的垂线,垂足分别为F、G,则S△OBC=S矩形OADF=2S△OEG=k,又∵EG∥BC,∴△OEG∽△OBC,∴=()2=2,∴=,∴=,∴==,∴=,∴k=12.故答案为12.12.如图,在平面直角坐标系中,∠OAB=60°,∠AOB=90°,反比例函数y1=的图象经过点A,反比例函数y2=﹣的图象经过点B,则m的值为1.解:作BH⊥x轴,垂足为H,AM⊥y轴,垂足为M,∵∠OAB=60°,∠AOB=90°,∴△BHO∽△AMO,∴,令OM=a,则BH=,代入反比例函数y2=﹣得:x=,∴OH=,得:AM=,∴,又∵AM•OM=m,∴m=1.故答案为1.13.如图,线段OA与函数y=(x>0)的图象交于点B,且AB=2OB,点C也在函数y=(x>0)图象上,连结AC并延长AC交x轴正半轴于点D,且AC=3CD,连结BC,若△BCD的面积为3,则k的值为.解:如图,分别过点A,B,C作x轴的垂线,垂足分别为M,E,F.∴BE∥CF∥AM,∴OB:OA=BE:AM=OE:OM=1:3,CD:AD=DF:DM=CF:AM=1:4,设点B的坐标为(a,b),∴OE=a,BE=b,∴AM=3BE=3b,OM=3OE=3a,∴CF=AM=b,∴C(a,b),∴OF=a,∴FM=OM﹣OF=a,∴DF=FM=a,∴OD=OM﹣DF﹣FM=a.∵△BCD的面积为3,∴△ABC的面积=3×△BCD的面积=9,∴△ABD的面积=12.∴△BOD的面积=×△ABD的面积=6.∴•OD•BE=a×b=6.解得k=ab=.故答案为:.14.如图,在平面直角坐标系中,点A、B在函数y=(k>0,x>0)的图象上,过点A作x轴的垂线,与函数y=﹣(x>0)的图象交于点C,连接BC交x轴于点D.若点A的横坐标为1,BC=3BD,则点B的横坐标为2.解:作BE⊥x轴于E,∴AC∥BE,∴△CDF∽△BDE,∴==,∵BC=3BD,∴==,∴CF=2BE,DF=2DE,设B(,b),∴C(1,﹣2b),∵函数y=﹣(x>0)的图象交于点C,∴﹣k=1×(﹣2b)=﹣2b,∴k=2b,∴B的横坐标为==2,故答案为:2.15.如图,在△ABC中,边AB在x轴上,边AC交y轴于点E.反比例函数y=(x>0)的图象恰好经过点C,与边BC交于点D.若AE=CE,CD=2BD,S△ABC=6,则k=.解:如图,作CM⊥AB于点M,DN⊥AB于点N,设C(m,),则OM=m,CM=,∵OE∥CM,AE=CE,∴==1,∴AO=m,∵DN∥CM,CD=2BD,∴===,∴DN=,∴D的纵坐标为,∴=,∴x=3m,即ON=3m,∴MN=2m,∴BN=m,∴AB=5m,∵S△ABC=6,∴5m•=6,∴k=.故答案为:.16.如图,A为反比例函数(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=2.过点B作BC⊥OB,交反比例函数(其中x>0)的图象于点C,连接OC交AB于点D,则的值为.解:过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=OB=2,∴AH===6,∴点A的坐标为(2,6).∵A为反比例函数(其中x>0)图象上的一点,∴k=2×6=12.∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC=3.∵AH∥BC,OH=BH,∴MH=BC=,∴AM=AH﹣MH=.∵AM∥BC,∴△ADM∽△BDC,∴,故答案为.17.如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y=和y=(k<0)上,=,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为.解:作AM⊥x轴于M,DN⊥x轴于N,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOM+∠DON=∠ODN+DON=90°,∴∠AOM=∠ODN,∵∠AMO=∠OND=90°,∴△AOM∽△ODN,∴=()2,∵A点在双曲线y=,=,∴S△AOM=×4=2,=,∴=()2,∴S△ODN=,∵D点在双曲线y=(k<0)上,∴|k|=,∴k=﹣9,∵平行于x轴的直线与两双曲线分别交于点E,F,∴S△OEF=+=,故答案为.18.如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l交于点C,D,且∠COD=45°,则k=8.解:点A、B的坐标分别为(4,0)、(0,4),即:OA=OB,∴∠OAB=45°=∠COD,∠ODA=∠ODA,∴△ODA∽△CDO,∴OD2=CD•DA,设点E(m,n),则点D(4﹣n,n),点C(m,4﹣m),则OD2=(4﹣n)2+n2=2n2﹣8n+16,CD=(m+n﹣4),DA=n,即2n2﹣8n+16=(m+n﹣4)×n,解得:mn=8=k,故答案为8.19.如图,平行四边形ABCD的顶点C在y轴正半轴上,CD平行于x轴,直线AC交x轴于点E,BC⊥AC,连接BE,反比例函数y=(x>0)的图象经过点D,已知S△BCE=2,则k的值是4.解:(解法一)过点D作DF⊥x轴于点F,如图所示.∵四边形ABCD是平行四边形,∴BC∥AD,BC=AD.又∵BC⊥AC,∴DA⊥AC.∵CD平行于x轴,∴∠ACD=∠CEO.∵CO⊥OE,DA⊥AC,∴∠ECO=∠D.设点D的坐标为(m,)(m>0),则CD=m,OC=DF=.在Rt△CAD中,CD=m,∠CAD=90°,AD=m•cos∠D.在Rt△COE中,OC=,∠COE=90°,CE==.S△BCE=CE•BC=•m•cos∠D=k=2,解得:k=4;(解法二)设点D的坐标为(m,n)(m>0,n>0),则CD=m,OC=n,∵CD∥x轴,∴∠ACD=∠OEC.∵四边形ABCD为平行四边形,BC⊥AC,∴DA⊥AC,AD=BC,∴∠DAC=∠COE=90°,∴△COE∽△DAC,∴=,即=,∴mn=BC•CE.∵S△BCE=BC•CE=2,∴mn=2S△BCE=4.∵点D在反比例函数y=(x>0)的图象上,∴k=mn=4.故答案为:4.20.如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB.过点B作BC⊥OB,交反比例函数y=(其中x>0)的图象于点C,连接OC交AB于点D,则的值为.解:过点A作AH⊥x轴,垂足为H,AH交OC于点M,如图,∵OA=AB,AH⊥OB,∴OH=BH=OB=×4=2,A(2,),C(4,),∵AH∥BC,∴MH=BC=,∴AM=AH﹣MH=﹣=,∵AM∥BC,∴△ADM∽△BDC,∴==.21.如图,点A在反比例函数第一象限内图象上,点B在反比例函数第三象限内图象上,AC⊥y轴于点C,BD⊥y轴于点D,交于点E,若BO=CE,则k的值为.解:过点A作AP⊥x轴于点P,过点B作BQ⊥x轴于点Q,∵AC=BD=,∴点A的横坐标为,点B的横坐标为﹣,∵点A在反比例函数第一象限内图象上,点B在反比例函数第三象限内图象上,∴点A的纵坐标为6,点B的纵坐标为﹣3,∵AC⊥y轴,BD⊥y轴,∴CD=AP+BQ=9,OD=3,AC∥BD,∴∠CAE=∠DBE,∠ACE=∠BDE,∴△ACE≌△BDE(AAS),∴CE=DE=CD=,∵BO=CE,∴BO=,在Rt△BOD中,由勾股定理可得BD2+OD2=OB2,即,解得k=或k=﹣(舍去),故答案为:.22.如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,AE⊥BC于E点,交BD于M点,反比例函数的图象经过线段DC的中点N,若BD=4,则ME的长为.解:在菱形ABCD中,AB=BC,BD⊥AC,OB=OD==2,∠ABC=2∠OBC,∴点D(0,2),设点C(m,0),∵点N为CD的中点,∴点,∵反比例函数的图像经过点N,∴,解得:,即点,∴,∴,,∴∠OBC=30°,∴∠ABC=60°,∴△ABC为等边三角形,∴,∵AE⊥BC,∴,∴.故答案为:.23.如图,平面坐标系中,AB交矩形ONCM于E、F,若=(m>1),且双曲线y=也过E、F两点,记S△CEF=S1,S△OEF=S2,用含m的代数式表示.解:过点F作FG⊥y轴于点G,如图所示:∵CM⊥y轴,FG⊥y轴,∴CM∥FG,MC=FG,∴△BME∽△BGF,∴===,设点C的坐标为(a,b),则E(,b),F(a,),∴S1=×(a﹣)•(b﹣)=ab;S2=a•b﹣•﹣•﹣ab=ab.∴=.24.如图,在平面直角坐标系中,点P、Q在函数y=(x>0)的图象上,PA、QB分别垂直x轴于点A、B,PC、QD分别垂直y轴于点C、D.设点P的横坐标为m,点Q的纵坐标为n,△PCD的面积为S1,△QAB的面积为S2.(1)当m=2,n=3时,求S1、S2的值;(2)当△PCD与△QAB全等时,若m=3,直接写出n的值.解:(1)∵当m=2时,y==6,∴P(2,6).∵PA⊥x轴,PC⊥y轴,∴PC=OA=2,PA=OC=6.∵当m=3时,x==4,∴Q(4,3).∵QB⊥x轴,QD⊥y轴,∴DQ=OB=4,QB=OA=3,∴CD=OC﹣OD=3,AB=OB﹣OA=2,∴S1=CD•CP=×3×2=3,S2=AB•QB=×2×3=3.(2)∵m=3,∴P(3,4),∴PC=OA=3,当△PCD≌△QBA时,∵QB=PC=3,∴n=3;当△PCD≌△ABQ时,∵PC=OA=3,∴AB=PC=3,∴OB=OA+AB=3+3=6.∵点Q在反比例函数y=的图象上,∴y==2,∴n=2.综上所述,n=2或3.25.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(1,2)、B(﹣2,n)两点.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b>的x的取值范围;(3)若点P在线段AB上,且S△AOP:S△BOP=1:4,求点P的坐标.解:(1)∵反比例函数y=经过A(1,2),∴k2=1×2=2,∴反比例函数解析式为y=,∵B(﹣2,n)在反比例函数y=的图象上,∴n==﹣1,∴B(﹣2,﹣1),∵直线y=k1x+b经过A(1,2),B(﹣2,﹣1),∴,解得,∴一次函数的解析式为y=x+1;(2)观察图象,k1x+b>的x的取值范围是﹣2<x<0或x>1;(3)设P(x,x+1),∵S△AOP:S△BOP=1:4,∴AP:PB=1:4,即PB=4PA,∴(x+2)2+(x+1+1)2=16[(x﹣1)2+(x+1﹣2)2],解得x1=,x2=2(舍去),∴P点坐标为(,).26.如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=(k>0)的图象经过点D且与边BA交于点E,连接DE.(1)连接OE,若△EOA的面积为2,则k=4;(2)连

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论