版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页人教版数学八年级下册期中考试试卷一、单选题1.要使二次根式有意义,则x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x≠﹣2 D.x≤﹣22.若,则()A. B. C. D.3.估算的值是()A.在1和2之间 B.在2和3之间C.在3和4之间 D.在4和5之间4.已知ab<0,则化简后为:()A. B. C. D.5.下列命题:①两直线平行,内错角相等;②对角线互相平分的四边形是平行四边形;③全等三角形对应角相等;④平行四边形的两组对边分别相等.其逆命题成立的个数有()A.1个 B.2个 C.3个 D.4个6.如图,数轴上A表示数﹣2,过数轴上表示1的点B作BC⊥x轴,若BC=2,以A为圆心,AC为半径作圆弧交数轴于点P,那么数轴上点P所表示的数是()A. B.﹣2 C.﹣3 D.4﹣7.如图,花园住宅小区有一块长方形绿化带,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“路”.他们仅仅少走了()步路(假设2步为1米),却踩伤了花草.A.6步 B.5步 C.4步 D.2步8.如图,在平行四边形ABCD中,BC=10,AC=14,BD=8,则△BOC的周长是()A.21 B.22 C.25 D.329.如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为()A.10° B.15° C.20° D.30°10.已知,在河的两岸有A,B两个村庄,河宽为4千米,A、B两村庄的直线距离AB=10千米,A、B两村庄到河岸的距离分别为1千米、3千米,计划在河上修建一座桥MN垂直于两岸,M点为靠近A村庄的河岸上一点,则AM+BN的最小值为()A.2 B.1+3 C.3+ D.二、填空题11.在实数范围内因式分解:x2﹣2=_____.12.已知实数a满足|2006﹣a|+=a,则a﹣20062=_____.13.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到点D,则橡皮筋被拉长了_____cm.14.在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则折痕CE的长为______.15.将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为____度.16.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于_____cm.三、解答题17.计算(1)23﹣8+1212(2)15÷(﹣136)×18.已知a,b,c为实数且c=+,求代数式c2﹣ab的值.19.如图,在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.求证:四边形AECF是平行四边形.20.一块试验田的形状如图,已知:∠ABC=90°,AB=4m,BC=3m,AD=12m,CD=13m.求这块试验田的面积.21.如图,正方形网格的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,图中四条线段的端点均在格点上.(1)平移图中的线段,你能使哪三条线段首尾连接构成一个格点三角形,请画出平移后的图形;(2)判断并说明三角形的形状.22.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.23.如图,有两条公路OM和ON相交成30°角,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁50米内会受到噪声影响.已知有两台相距50米的拖拉机正沿ON方向行驶,它们的速度均为5米/秒,问这两台拖拉机沿ON方向行驶时给小学带来噪声影响的时间是多少?24.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.25.如图1,在平面直角坐标系xOy中,A(a,0)、B(0,b)、C(﹣a,0),且a−2+b2﹣4b+4=0(1)求证:∠ABC=90°;(2)作∠ABO的平分线交x轴于一点D,求D点的坐标;(3)如图2所示,A、B两点在x轴、y轴上的位置不变,在线段AB上有两动点M、N,满足∠MON=45°,下列结论:①BM+AN=MN;②BM2+AN2=MN2,其中有且只有一个结论成立.请你判断哪一个结论成立,并证明成立的结论.参考答案1.B【解析】试题解析:根据题意得,x+2≥0,解得x≥-2.故选B.2.D【解析】等式左边为非负数,说明右边,由此可得b的取值范围.【详解】解:,
,解得故选D.【点睛】本题考查了二次根式的性质:,.3.B【解析】分析:根据数的平方估出介于哪两个整数之间,从而找到其对应的点.详解:∵,∴2<<3,故选B.点睛:本题考查了无理数的估算以及数轴上的点和数之间的对应关系,解题的关键是求出介于哪两个整数之间.4.D【解析】根据二次根式有意义的条件结合ab<0,可得出.再根据算术平方根和绝对值的性质,进行化简即可.【详解】根据二次根式有意义的条件,,即,又∵ab<0∴a>0,故选D.【点睛】本题考查二次根式的性质与化简,二次根式有意义的条件.解决本题需注意两点:①能根据二次根式有意义的条件和ab<0得出a>0;②会根据对根式进行化简.5.C【解析】交换原命题的题设与结论得到四个命题的逆命题,然后分别根据平行线的判定、平行四边形的性质、全等三角形的判定和平行四边形的判定方法判断四个逆命题的真假.【详解】解:①“两直线平行,内错角相等”的逆命题为“内错角相等,两直线平行”,此逆命题为真命题;②“对角线互相平分的四边形是平行四边形的逆命题为“平行四边形的对角线互相平分”,此逆命题为真命题;③“全等三角形对应角相等”的逆命题为“对应角相等的三角形全等”,此逆命题为假命题;④“平行四边形的两组对边分别相等”的逆命题为“两组对边分别相等的四边形为平行四边形”,此逆命题为真命题.故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.6.B【解析】首先在直角三角形中,利用勾股定理可以求出线段CA的长度,然后根据AC=AP即可求出AP的长度,接着可以求出数轴上点P所表示的数.【详解】解:∵CA=,∴AC=AP=,∴P到原点的距离是﹣2,且P在原点右侧.∴点P所表示的数是﹣2.故选B.【点睛】此题主要考查了实数与数轴之间的对应关系,首先正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.7.C【解析】试题分析:少走的距离是AC+BC﹣AB,在直角△ABC中根据勾股定理求得AB的长即可.解:在直角△ABC中,AAB=A则少走的距离是AC+BC﹣AB=3+4﹣5=2m=4步.故选C.考点:勾股定理的应用8.A【解析】由平行四边形的性质得出OA=OC=7,OB=OD=4,即可得出△BOC的周长.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC=7,OB=OD=4,∴△BOC的周长=OB+OC+BC=4+7+10=21;故选:A.【点睛】本题考查了平行四边形的性质以及三角形周长的计算;熟记平行四边形的对角线互相平分是解题关键.9.B【解析】根据菱形的对角相等得∠ADC=∠B=70°.∵AD=AB=AE,∴∠AED=∠ADE.根据折叠得∠AEB=∠B=70°.∵AD∥BC,∴∠DAE=∠AEB=70°,∴∠ADE=∠AED=55°.∴∠EDC=70°-55°=15°.故选B.10.A【解析】作BB'垂直于河岸,使BB′等于河宽,连接AB′,与靠近A的河岸相交于M,作MN垂直于另一条河岸,则MN∥BB′且MN=BB′,于是MNBB′为平行四边形,故MB′=BN;根据“两点之间线段最短”,AB′最短,即AM+BN最短,此时AM+BN=AB′.【详解】解:如图,作BB'垂直于河岸,使BB′等于河宽,连接AB′,与靠近A的河岸相交于M,作MN垂直于另一条河岸,则MN∥BB′且MN=BB′,于是MNBB′为平行四边形,故MB′=BN.根据“两点之间线段最短”,AB′最短,即AM+BN最短.∵AB=10千米,BC=1+3+4=8千米,∴在RT△ABC中,,在RT△AB′C中,B′C=1+3=4千米,∴AB′=千米;故选A.【点睛】本题考查了轴对称—最短路径问题,要利用“两点之间线段最短”,但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成两点之间线段最短的问题.目前,往往利用对称性、平行四边形的相关知识进行转化.11.(x一)(x+)【解析】试题分析:利用平方差公式即可分解.﹣2=.故答案为.考点:实数范围内分解因式.12.2007【解析】根据被开方数大于等于0可以求出a≥2007,然后去掉绝对值号整理,再两边平方整理即可得解.【详解】解:根据题意得,a﹣2007≥0,解得a≥2007,∴原式可化为:,即=2006,两边平方得,a﹣2007=20062,∴a﹣20062=2007.故答案为2007.【点睛】本题考查了二次根式有意义的条件,解法巧妙,先求出a的取值范围然后去掉绝对值号是解题的关键,也是本题的突破口.13.2.【解析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【详解】Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故答案为2.【点睛】此题主要考查了等腰三角形的性质以及勾股定理的应用.14.5【解析】【分析】首先求出DF的长度,进而求出AF的长度;根据勾股定理列出关于线段BE的方程,可求BE的长,由勾股定理可求CE的长.【详解】解:∵折叠∴FC=BC=10,BE=EF(设为x)∵四边形ABCD为矩形,∴∠D=90°,DC=BC=8,由勾股定理得:DF2=102﹣82=36,∴DF=6,AF=10﹣6=4;由勾股定理得:EF2=AE2+AF2,即x2=(8﹣x)2+42解得:x=5,∴BE=5,∴,故答案为5【点睛】本题主要考查的是翻折的性质、矩形的性质、勾股定理,求得BE的长是解题的关键.15.30.【解析】解:过点A作AE⊥BC于点E.∵将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),∴当AE=AB,则符合要求,此时∠B=30°,即这个平行四边形的最小内角为:30度.故答案为30.点睛:本题主要考查了矩形的性质和平行四边形面积求法等知识,得出AE=AB是解题的关键.16.1或2.【解析】试题分析:根据题意画出图形,过P作PN⊥BC,交BC于点N,∵四边形ABCD为正方形,∴AD=DC=PN,在Rt△ADE中,∠DAE=30°,AD=3cm,∴tan30°=,即DE=cm,根据勾股定理得:AE=cm,∵M为AE的中点,∴AM=cm;在Rt△ADE和Rt△PNQ中,AD=PN,AE=PQ,∴Rt△ADE≌Rt△PNQ(HL),∴DE=NQ,∠DAE=∠NPQ=30°,∵PN∥DC,∴∠PFA=∠DEA=60°,∴∠PMF=90°,即PM⊥AF,在Rt△AMP中,∠MAP=30°,cos30°=,∴AP=2cm;由对称性得到AP′=DP=AD-AP=3-2=1cm,综上,AP等于1cm或2cm.考点:全等三角形的判定与性质;正方形的性质;锐角三角函数.17.(1)33﹣2;(2)﹣92.【解析】【分析】(1)先把各个二次根式根据二次根式的性质化为最简二次根式,合并同类二次根式即可;(2)根据二次根式的乘除运算法则计算即可.【详解】解:(1)原式=23﹣22+3+2=33﹣2;(2)原式=15=−15=−=﹣92.【点睛】本题考查的是二次根式的混合运算,掌握二次根式的性质、正确把各个二次根式化为最简二次根式是解题的关键.18.12﹣4.【解析】【分析】先依据二次根式有意义的条件,求得a、b的值,然后再代入计算即可.【详解】解:根据二次根式有意义的条件可得:a-3≥0,3-1≥0,-(b+1)2≥0,∴a=3,b=﹣1,∴c=2﹣代入代数式c2﹣ab得:原式=,=12﹣4.【点评】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.19.证明见解析.【解析】【分析】只要证明AF=CE,AF∥CE即可.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AF=CE,∴四边形AECF是平行四边形.【点睛】本题考查平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判断方法20.36平方米【解析】试题分析:连接AC,根据勾股定理得出△ABC和△ACD都是直角三角形,然后根据直角三角形的面积计算法则得出答案.试题解析:连接AC根据勾股定理可得:AC=5m∵AD=13m,CD=13m∴△ACD为直角三角形∴S=3×4÷2+5×12÷2=6+30=36(平方米)考点:勾股定理21.(1)见解析;(2)△ABC为直角三角形.【解析】【分析】(1)把线段②不动,平移③④,使线段②③④首尾连接构成一个三角形;(2)先利用勾股定理计算出AB、AC、BC,然后利用勾股定理的逆定理可证明△ACB为直角三角形.【详解】解:(1)如图,线段②③④首尾连接构成一个三角形,△ABC为所作;(2)△ABC为直角三角形.理由如下:∵AC2=12+22=5,BC2=22+42=20,AC2=32+42=25,而5+20=25,∴AC2+BC2=AC2,∴△ACB为直角三角形,∠ACB=90°.【点睛】本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.22.见解析【解析】【分析】首先根据两对边互相平行的四边形是平行四边形证明四边形OCED是平行四边形,再根据矩形的性质可得OC=OD,即可利用一组邻边相等的平行四边形是菱形判定出结论.【详解】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是矩形,∴OC=OD=AC=BD∴四边形OCED是菱形.23.18秒【解析】本题考查的是勾股定理的应用点A作AC⊥ON,求出AC的长,第一台到B点时开始对学校有噪音影响,第一台到C点时,第二台到B点也开始有影响,第一台到D点,第二台到C点,直到第二台到D点噪音才消失.如图,过点A作AC⊥ON,∵∠MON=30°,OA=80米,∴AC=40米,当第一台拖拉机到B点时对学校产生噪音影响,此时AB=50,由勾股定理得:BC=30,第一台拖拉机到D点时噪音消失,所以CD=30.由于两台拖拉机相距30米,则第一台到D点时第二台在C点,还须前行30米后才对学校没有噪音影响.所以影响时间应是:90÷5=18秒.答:这两台拖拉机沿ON方向行驶给小学带来噪音影响的时间是18秒.24.(1)见解析;(2)能,t=10;(3)t=或12.【解析】【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)△DEF为直角三角形,分∠EDF=90°和∠DEF=90°两种情况讨论.【详解】解:(1)证明:∵在Rt△ABC中,∠C=90°﹣∠A=30°,∴AB=AC=×60=30cm,∵CD=4t,AE=2t,又∵在Rt△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;(2)能,∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,∴当t=10时,AEFD是菱形;(3)若△DEF为直角三角形,有两种情况:①如图1,∠EDF=90°,DE∥BC,则AD=2AE,即60﹣4t=2×2t,解得:t=,②如图2,∠DEF=90°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024充电桩项目环境影响评估合同
- 2024年度广告发布合同:某品牌与广告代理公司之间的广告投放协议
- 2024年度城市基础设施建设项目合同担保指南
- 2024年度演艺经纪合同:艺人经纪公司艺人经纪合同
- 2024年度国际投资与股权转让合同
- 2024年度保险代理与承保合同
- 2024年度二手房购房贷款申请合同
- 04版教育培训与服务合同
- 2024年度农产品批销市场独家合作合同
- 2024年度健身俱乐部会员协议including会员权益与服务项目
- 众泰汽车操作说明书
- 《家电维修》2001年到2008年查询目录
- 万千教育学前读懂儿童的思维:支持自主游戏中的图式探索
- 产品外观检验标准通用
- 焊接技术的职业规划书
- 我爱宁波教案
- 药理学课件:消化系统药
- 产品合格证出厂合格证A4打印模板
- 新疆乌鲁木齐高级中学2023-2024学年高一上学期期中考试化学试卷
- 国家开放大学《计算机应用基础(本)》学士毕业论文《家用电器销售管理系统的设计与实现》
- 人工智能与工业自动化
评论
0/150
提交评论