版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省衡阳市樟树中学2025届数学高一上期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.计算()A. B.C. D.2.把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是()A. B.C. D.3.设,且,则()A. B.C. D.4.已知是上的奇函数,且当时,,则当时,()A. B.C. D.5.设集合,,则集合=()A B.C. D.6.设函数,则下列函数中为奇函数的是()A. B.C. D.7.已知函数,方程在有两个解,记,则下列说法正确的是()A.函数的值域是B.若,的增区间为和C.若,则D.函数的最大值为8.平行于直线且与圆相切的直线的方程是A.或 B.或C.或 D.或9.“两个三角形相似”是“两个三角形三边成比例”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.心理学家有时用函数测定在时间t(单位:min)内能够记忆的量L,其中A表示需要记忆的量,k表示记忆率.假设一个学生需要记忆的量为200个单词,此时L表示在时间t内该生能够记忆的单词个数.已知该生在5min内能够记忆20个单词,则k的值约为(,)A.0.021 B.0.221C.0.461 D.0.661二、填空题:本大题共6小题,每小题5分,共30分。11.已知定义域为R的函数,满足,则实数a的取值范围是______12.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.13.已知在平面直角坐标系中,角顶点在原点,始边与轴的正半轴重合,终边经过点,则___________.14.已知向量满足,且,则与的夹角为_______15.已知函数,正实数,满足,且,若在区间上的最大值为2,则________.16.在下列四个函数中:①,②,③,④.同时具备以下两个性质:(1)对于定义域上任意x,恒有;(2)对于定义域上的任意、,当时,恒有的函数是______(只填序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为奇函数.(1)求实数a的值;(2)求的值.18.已知幂函数,且在上为增函数.(1)求函数的解析式;(2)若,求的取值范围.19.已知函数,(其中)(1)求函数的值域;(2)如果函数在恰有10个零点,求最小正周期的取值范围20.已知函数(1)求的定义域;(2)判断的奇偶性,并说明理由;(3)设,证明:21.某种蔬菜从1月1日起开始上市,通过市场调查,得到该蔬菜种植成本(单位:元/)与上市时间(单位:10天)数据如下表:时间51125种植成本1510.815(1)根据上表数据,从下列函数:,,,中(其中),选取一个合适的函数模型描述该蔬菜种植成本与上市时间的变化关系;(2)利用你选取的函数模型,求该蔬菜种植成本最低时的上市时间及最低种植成本.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用正切的诱导公式即可求解.【详解】,故选:A.2、A【解析】由题意,的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),即解析式为,向左平移一个单位为,向下平移一个单位为,利用特殊点变为,选A.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.函数是奇函数;函数是偶函数;函数是奇函数;函数是偶函数.3、D【解析】根据同角三角函数的基本关系,两角和的正弦公式,即可得到答案;详解】,,,,故选:D4、B【解析】设,则,求出的解析式,根据函数为上的奇函数,即可求得时,函数的解析式,得到答案.【详解】由题意,设,则,则,因为函数为上的奇函数,则,得,即当时,.故选:B.【点睛】本题主要考查了利用函数的奇偶性求解函数的解析式,其中解答中熟记函数的奇偶性,合理计算是解答的关键,着重考查了推理与运算能力,属于基础题.5、B【解析】先根据一元二次不等式和对数不等式的求解方法求得集合M、N,再由集合的交集运算可得选项【详解】解:由得,解得或,所以集合,由得,解得,所以集合,所以,故选:B6、A【解析】分别求出选项的函数解析式,再利用奇函数的定义即可得选项.【详解】由题意可得,对于A,是奇函数,故A正确;对于B,不是奇函数,故B不正确;对于C,,其定义域不关于原点对称,所以不是奇函数,故C不正确;对于D,,其定义域不关于原点对称,不是奇函数,故D不正确.故选:A.7、B【解析】利用函数的单调性判断AB选项;解方程求出从而判断C选项;举反例判断D选项.【详解】对于A选项,当时,,,为偶函数,当时,,任取,且,,若,则;若,则,即函数在区间上单调递减,在区间上单调递增,图像如图示:结合偶函数的性质可知,的值域是,故A选项错误;对于B选项,,当时,,,则为偶函数,当时,,易知函数在区间上单调递减,当时,,易知函数在区间上单调递增,图像如图示:根据偶函数的性质可知,函数的增区间为和,故B选项正确;对于C选项,若,图像如图示:若,则,与方程在有两个解矛盾,故C选项错误;对于D选项,若时,,图像如图所示:当时,则与方程在有两个解矛盾,进而函数的最大值为4错误,故D选项错误;故选:B8、A【解析】设所求直线为,由直线与圆相切得,,解得.所以直线方程为或.选A.9、C【解析】根据相似三角形性质,结合充分条件、必要条件的判定方法,即可求解.【详解】根据相似三角形的性质得,由“两个三角形相似”可得到“两个三角形三边成比例”,即充分性成立;反之:由“两个三角形三边成比例”可得到“两个三角形相似”,即必要性成立,所以“两个三角形相似”是“两个三角形三边成比例”的充分必要条件.故选:C.10、A【解析】由题意得出,再取对数得出k的值.【详解】由题意可知,所以,解得故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先判断函数奇偶性,再判断函数的单调性,从而把条件不等式转化为简单不等式.【详解】由函数定义域为R,且,可知函数为奇函数.,令则,令则即在定义域R上单调递增,又,由此可知,当时,即,函数即为减函数;当时,即,函数即为增函数,故函数在R上的最小值为,可知函数在定义域为R上为增函数.根据以上两个性质,不等式可化为,不等式等价于即解之得或故答案为12、3【解析】根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2,所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,在[50,60)年龄段抽取人数为【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题13、【解析】根据角的终边经过点,利用三角函数的定义求得,然后利用二倍角公式求解.【详解】因为角的终边经过点,所以,所以,所以,故答案为:14、##【解析】根据平面向量的夹角公式即可求出【详解】设与的夹角为,由夹角余弦公式,解得故答案为:15、【解析】先画出函数图像并判断,再根据范围和函数单调性判断时取最大值,最后计算得到答案.【详解】如图所示:根据函数的图象得,所以.结合函数图象,易知当时在上取得最大值,所以又,所以,再结合,可得,所以.故答案为:【点睛】本题考查对数型函数的图像和性质、函数的单调性的应用和最值的求法,是中档题.16、③④【解析】满足条件(1)则函数为奇函数,满足条件(2)则函数为其定义域上的减函数.分别判断四个函数的单调性和奇偶性即可.【详解】满足条件(1)则函数为奇函数,满足条件(2)则函数为其定义域上的减函数.①,f(x)奇函数,在定义域不单调;②,f(x)是偶函数,在定义域R内不单调;③,f(x)是奇函数,且在定义域R上单调递减;④,满足为奇函数,且根据指数函数性质可知其在定义域R上为减函数.综上,满足条件(1)(2)的函数有③④.故答案为:③④.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由奇函数定义求;(2)代入后结合对数恒等式计算.【详解】(1)因为函数为奇函数,所以恒成立,可得.(2)由(1)可得.所以.【点睛】本题考查函数的奇偶性,考查对数恒等式,属于基础题.18、(1)(2)【解析】(1)因为函数是幂函数,求出或,再分别验证是否满足函数在上是增函数;(2)由(1)知,根据函数的定义域和单调性解不等式.【详解】(1),即,则,解得或,当时,,当时,,∵在上为增函数,∴.(2)由(1)得定义域为且在上为增函数,∴,解得:,所以的取值范围为:.【点睛】本题考查幂函数和根据函数的性质解抽象不等式,意在考查基本概念和基本方法,属于基础题型.19、(1)(2)【解析】(1)利用两角和与差的正弦函数、二倍角公式化简,将化为只含有一个三角函数的形式,然后利用三角函数性质求解;(2)将在恰有10个零点变为在在恰有10个解的问题,列出相应不等式即可求解.【小问1详解】,由,得,可知函数的值域为,【小问2详解】令,即,所以函数在恰有10个零点,即在在恰有10个解,设的最小正周期为,则,解得,即最小正周期的取值范围时.20、(1)(2)偶函数;理由见解析(3)证明见解析【解析】(1)根据对数函数的真数大于0建立不等式求解;(2)根据函数的奇偶性定义判断即可;(3)利用不等式的性质及对数函数的单调性证明即可.【小问1详解】因为,即,所以函数的定义域是【小问2详解】因为,都有,且,所以函数为偶函数【小问3详解】因为,所以所以所以因为是增函数,所以因为,,所以21、(1);(2)该蔬菜上市150天时,该蔬菜种植成本最低为10(元/).【解析】(1)先作出散点图,根据散点图的分布即可判断只有模型符合,然后将数据代入建立方程组,求出参数.(2)由于模型为二次函数,结合定义域,利用配方法即可求出最低种植成本以及对应得上市时间.【详解】解:(1)以上市时间(单位:10天)为横坐标,以种植成本(单位/)为纵坐标,画出散点图(如图).根据点的分布特征,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024专业机械设备买卖协议典范版B版
- 2024实习职工入职合同
- 2024年专业商品混凝土物流服务合同版B版
- 2024年区块链技术应用研究与开发合同
- 2024年个人独资企业解散协议
- 2024全新卖房协议合同下载
- 江南大学《产品设计1》2021-2022学年第一学期期末试卷
- 佳木斯大学《商务日语视听说1》2021-2022学年第一学期期末试卷
- 2024常用建筑材料供应协议模板一
- 2024专业离婚子女探望细则协议
- 小班音乐 小猪吃的饱饱
- 防静电地板砖施工方案和技术措施
- 2023-2024学年北京海淀区八一学校高一(上)期中数学试题及答案
- ISO顾客满意度调查报告
- 5G网络运维探索
- 土石方工程战略合作协议书(4篇)
- 管理人员能力评价表
- 2021年12月大学英语四级考试真题+答案第2套
- 大学生科学运动与控制体重智慧树知到课后章节答案2023年下黑龙江幼儿师范高等专科学校
- 内部市场化管理办法
- 危险废物一览表
评论
0/150
提交评论