版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省登封市外国语中学高一数学第一学期期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点所在的区间是()A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)2.化学上用溶液中氢离子物质的量浓度的常用对数值的相反数表示溶液的,例如氢离子物质的量浓度为的溶液,因为,所以该溶液的是1.0.现有分别为3和4的甲乙两份溶液,将甲溶液与乙溶液混合,假设混合后两份溶液不发生化学反应且体积变化忽略不计,则混合溶液的约为()(精确到0.1,参考数据:.)A.3.2 B.3.3C.3.4 D.3.83.将函数图象上所有点的横坐标缩短为原来的倍(纵坐标不变),再向右平移个单位,得到函数的图象,则函数的图象的一条对称轴为A. B.C. D.4.已知函数为奇函数,且当x>0时,=x2+,则等于()A.-2 B.0C.1 D.25.下列关系式中,正确的是A. B.C. D.6.某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的表面积为A. B.C. D.7.已知,若,则x的取值范围为()A. B.C. D.8.函数的零点一定位于下列哪个区间().A. B.C. D.9.在正内有一点,满足等式,,则()A. B.C. D.10.函数(且)图象恒过定点,若点在直线上,其中,则的最大值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,三个内角所对的边分别为,,,,且,则的取值范围为__________12.若函数在上单调递减,则实数a的取值范围为___________.13.我国采用的“密位制”是6000密位制,即将一个圆周分为6000等份,每一个等份是一个密位,那么120密位等于______rad14.函数的定义域为__________________.15.若函数是定义在上的偶函数,当时,.则当时,______,若,则实数的取值范围是_______.16.设三棱锥的三条侧棱两两垂直,且,则三棱锥的体积是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.芦荟是一种经济价值很高的观赏、食用植物,不仅可以美化居室、净化空气,又可以美容保健,因此深受人们欢迎,在国内占有很大的市场,某人准备进入芦荟市场栽培芦荟,为了解行情,进行市场调研,从4月1日起,芦荟的种植成本Q(单位:元/10kg)与上市时间t(单位:天)的数据情况如下表:上市时间(t)50110250种植成本(Q)150108150(1)根据上表数据,从下列函数中选取一个最能反映芦荟种植成本Q与上市时间t的变化关系并求出函数关系式.;;;(2)利用你得到的函数关系式,求芦荟种植成本最低时上市天数t及最低种植成本18.设函数,其中,且.(1)求的定义域;(2)当时,函数图象上是否存在不同两点,使过这两点的直线平行于轴,并证明.19.已知函数的部分图象如图所示.(Ⅰ)求函数的解析式;(Ⅱ)若为第二象限角且,求的值.20.已知,函数.(Ⅰ)当时,解不等式;(Ⅱ)若关于的方程的解集中恰有一个元素,求的取值范围;(Ⅲ)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.21.设全集U=R,集合A={x|2x-1≥1},B={x|x2-4x-5<0}(Ⅰ)求A∩B,(∁UA)∪(∁UB);(Ⅱ)设集合C={x|m+1<x<2m-1},若B∩C=C,求实数m的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用零点存在性定理判断即可.【详解】易知函数的图像连续,,由零点存在性定理,排除A;又,,排除B;,,结合零点存在性定理,C正确故选:C.【点睛】判断零点所在区间,只需利用零点存在性定理,求出区间端点的函数值,两者异号即可,注意要看定义域判断图像是否连续.2、C【解析】求出混合后溶液的浓度,再转化为pH【详解】由题意pH为时,氢离子物质的量浓度为,混合后溶液中氢离子物质的量浓度为,pH为故选:C3、C【解析】,所以,所以,所以是一条对称轴故选C4、A【解析】首先根据解析式求值,结合奇函数有即可求得【详解】∵x>0时,=x2+∴=1+1=2又为奇函数∴故选:A【点睛】本题考查了函数的奇偶性,结合解析式及函数的奇偶性,求目标函数值5、C【解析】不含任何元素的集合称为空集,即为,而代表由单元素0组成的集合,所以,而与的关系应该是.故选C.6、D【解析】由三视图知几何体为圆柱挖去一个圆锥所得的组合体,且圆锥与圆柱的底面直径都为4,高为2,则圆锥的母线长为,∴该几何体的表面积S=π×22+2π×2×2+π×2×2=(12+4)π,故选D.7、C【解析】首先判断函数的单调性和定义域,再解抽象不等式.【详解】函数的定义域需满足,解得:,并且在区间上,函数单调递增,且,所以,即,解得:或.故选:C【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域.8、C【解析】根据零点存在性定理可得结果.【详解】因为函数的图象连续不断,且,,,,根据零点存在性定理可知函数的零点一定位于区间内.故选:C【点睛】关键点点睛:掌握零点存在性定理是解题关键.9、A【解析】过作交于,作交于,则,可得,在中由正弦定理可得答案.【详解】过作交于,作交于,则,,在中,,,由正弦定理得.故选:A.10、D【解析】∵由得,∴函数(且)的图像恒过定点,∵点在直线上,∴,∵,当且仅当,即时取等号,∴,∴最大值为,故选D【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】∵,,且,∴,∴,∴在中,由正弦定理得,∴,∴,∵,∴∴∴的取值范围为答案:12、【解析】利用复合函数的单调性,即可得到答案;【详解】在定义域内始终单调递减,原函数要单调递减时,,,,故答案为:13、##【解析】根据已知定义,结合弧度制的定义进行求解即可.【详解】设120密位等于,所以有,故答案为:14、【解析】由,解得,所以定义域为考点:本题考查定义域点评:解决本题关键熟练掌握正切函数的定义域15、①.②.【解析】根据给定条件利用偶函数的定义即可求出时解析式;再借助函数在单调性即可求解作答.【详解】因函数是定义在上的偶函数,且当时,,则当时,,,所以当时,;依题意,在上单调递增,则,解得,所以实数的取值范围是.故答案为:;16、【解析】根据锥体的体积公式,找到并求出三棱锥的高及底面面积即可求解.【详解】由题意可知该三棱锥为棱长为2的正方体的一个角,如图所示:所以故答案为:【点睛】本题考查锥体体积公式的应用,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)应选择二次函数;(2)当芦荟上市时间为150天时,种植成本最低为100元/10kg【解析】(1)根据数据变化情况可得应选择二次函数,代入数据即可求出解析式;(2)根据二次函数的性质可求解.【小问1详解】由题表提供的数据知,反映芦荟种植成本Q与上市时间t的变化关系不可能是常数函数,故用所给四个函数中任意一个来反映时都应有,而函数,,均为单调函数,这与题表所给数据不符合,所以应选择二次函数将表中数据代入,可得解得所以,芦荟种植成本Q与上市时间t之间的关系式为【小问2详解】当(天)时,,即当芦荟上市时间为150天时,种植成本最低为100元/10kg18、(1)当时,定义域为;当时,定义域为.(2)不存在,证明见解析.【解析】(1)首先根据题意得到,再分类讨论解不等式即可.(2)首先根据单调性定义得到函数在为增函数,从而得到函数图像上不存在不同两点,使过这两点的直线平行于轴.【详解】(1)由题知:,①当时,即,则,定义域为.②当时,即,则,定义域为.综上,当时,定义域为;当时,定义域为.(2)因为,所以函数的定义域为,任取,且,因为,所以,因为,所以,所以,即,所以,函数在为增函数,所以函数图象上不存在不同两点,使过这两点的直线平行于轴.19、(1);(2).【解析】(1)根据图象可得周期,故.再根据图象过点可得.最后根据函数的图象过点可求得,从而可得解析式.(2)由题意可得,进而可求得和,再按照两角和的正弦公式可求得的值试题解析:(1)由图可知,周期,∴.又函数的图象过点,∴,∴,∴,∵,∴∴,∵函数图象过点,∴,∴,所以.(2)∵为第二象限角且,∴,∴,,∴点睛:已知图象求函数解析式的方法(1)根据图象得到函数的周期,再根据求得(2)可根据代点法求解,代点时一般将最值点的坐标代入解析式;也可用“五点法”求解,用此法时需要先判断出“第一点”的位置,再结合图象中的点求出的值(3)在本题中运用了代点的方法求得的值,一般情况下可通过观察图象得到的值20、(Ⅰ);(Ⅱ);(Ⅲ).【解析】(Ⅰ)当时,利用对数函数的单调性,直接解不等式即可;(Ⅱ)化简关于的方程,通过分离变量推出的表达式,通过解集中恰有一个元素,利用二次函数的性质,即可求的取值范围;(Ⅲ)在上单调递减利用复合函数的单调性求解函数的最值,令,化简不等式,转化求解不等式的最大值,然后推出的范围.【详解】(Ⅰ)当时,,∴,整理得,解得.所以原不等式的解集为.(Ⅱ)方程,即为,∴,∴,令,则,由题意得方程在上只有一解,令,,转化为函数与的图象在上只有一个交点.则分别作出函数与的图象,如图所示结合图象可得,当或时,直线y=a和的图象只有一个公共点,即方程只有一个解所以实数范围为.(Ⅲ)因为函数在上单调递减,所以函数定义域内单调递减,所以函数在区间上的最大值为,最小值为,所以由题意得,所以恒成立,令,所以恒成立,因为在上单调递增,所以∴,解得,又,∴所以实数的取值范围是.【点睛】解答此类题时注意以下几点:(1)对于复合函数的单调性,可根据“同增异减”的方法进行判断;(2)已知方程根的个数(函数零点的个数)求参数范围时,可通过解方程的方法求解,对于无法解方程的,可通过分离、构造函数的方法转化为函数图象公共点个数的问题处理(3)解不等式的恒成立问题时,通常采取分离参数的方法,将问题转化为求函数的最值的问题21、(Ⅰ){x|x<1或x≥5},(Ⅱ)(-∞,3].【解析】(Ⅰ)求出集合A,B,由此能出A∩B,(∁UA)∪(∁UB)(Ⅱ)由集合C={x|m+1<x<2m﹣1},B∩C=C,得C⊆B,当C=∅时,2m﹣1<m+1,当C≠∅时,由C⊆B得,由此能求出m的取值范围【详解】解:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 职业规划及创业计划
- 关于外科常见病
- 小儿腹泻教育课件
- 外语大一职业生涯规划
- 疾控慢病年终总结
- 造瘘口护理查房
- 西南联合大学生活规划
- 抗精神病药物浅谈
- 事故案例提醒危化品储存企业必须加大对油气罐区的风险防控
- 消渴病的饮食指导
- 生产车间统计员培训
- 期末 (试题) -2024-2025学年人教PEP版(2024)英语三年级上册
- 2024中国慢性阻塞性肺疾病基层诊疗与管理指南解读
- 学习课件教程教学课件
- 2024年港股通知识测评试题
- 贵州省2024年中考化学真题(含答案)
- 结构化面试的试题及答案
- 2024年高等教育公共课自考-00005马克思主义政治经济学考试近5年真题集锦(频考类试题)带答案
- 非遗漆扇扇子科普宣传
- DL∕ T 1195-2012 火电厂高压变频器运行与维护规范
- 美术课程与教学论智慧树知到期末考试答案章节答案2024年四川师范大学
评论
0/150
提交评论