语文版中职数学基础模块上册3.4《函数的奇偶性》_第1页
语文版中职数学基础模块上册3.4《函数的奇偶性》_第2页
语文版中职数学基础模块上册3.4《函数的奇偶性》_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.4函数的奇偶性学案(2课时)学习目标1.理解函数的奇偶性的概念.2.能判断简单函数的奇偶性.3.树立变化对称和数形结合的思想.二、教材分析【教学重点】函数奇偶性的判断.【教学难点】函数奇偶性概念的理解.三、教学过程(一)复习回顾:1、对于f(x)=x、f(x)=x,分别比较f(x)与f(-x).2、对于f(x)=x、f(x)=x,分别比较f(x)与f(-x).(二)探究新课:1、做出函数、f(x)=x的图像2、观察以上两个函数的图像,我们发现函数的图像关于对称。函数f(x)=x的图像关于对称。3、奇函数和偶函数的概念:(1)奇函数:(2)偶函数:试一试:已知奇函数f(x)在y轴左边的图像如图所示,画出它右边的图像。(三)典例解析:判断下列函数的奇偶性:(1)f(x)=x+x3+x5(2)f(x)=x2+1(3)f(x)=x+1(4)f(x)=x2,x∈【-1,2】小结:判别方法,先看定义域是否关于原点对称,再计算,并与进行比较.(四)学生练习:判别下列函数的奇偶性:(1)f(x)=|x+1|+|x-1|;(2)f(x)=x+;(3)f(x)=;(4)f(x)=x,x∈[-2,3].(五)拓展训练:1.对于定义域是R的任意奇函数有().A. B.C. D.2.已知是定义上的奇函数,且在上是减函数.下列关系式中正确的是()A. B.C. D.3.下列说法错误的是().A.是奇函数B.是偶函数C.既是奇函数,又是偶函数D.既不是奇函数,又不是偶函数4.函数的奇偶性是.5.已知f(x)是奇函数,且在[3,7]是增函数且最大值为4,那么f(x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论