版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年陕西省延安市重点中学高三第一次模拟联考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是边长为的正三角形,若,则A. B.C. D.2.方程的实数根叫作函数的“新驻点”,如果函数的“新驻点”为,那么满足()A. B. C. D.3.设集合A={y|y=2x﹣1,x∈R},B={x|﹣2≤x≤3,x∈Z},则A∩B=()A.(﹣1,3] B.[﹣1,3] C.{0,1,2,3} D.{﹣1,0,1,2,3}4.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)5.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3 C. D.26.某几何体的三视图如图所示,其中正视图是边长为4的正三角形,俯视图是由边长为4的正三角形和一个半圆构成,则该几何体的体积为()A. B. C. D.7.某几何体的三视图如图所示,则该几何体的最长棱的长为()A. B. C. D.8.设函数的定义域为,命题:,的否定是()A., B.,C., D.,9.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是()A.甲 B.乙 C.丙 D.丁10.已知数列满足:,则()A.16 B.25 C.28 D.3311.设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为()A. B.C. D.12.函数与的图象上存在关于直线对称的点,则的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.展开式的第5项的系数为_____.14.如图,在长方体中,,E,F,G分别为的中点,点P在平面ABCD内,若直线平面EFG,则线段长度的最小值是________________.15.抛物线上到其焦点的距离为的点的个数为________.16.已知的终边过点,若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在,角、、所对的边分别为、、,已知.(1)求的值;(2)若,边上的中线,求的面积.18.(12分)如图,在四棱锥中,底面是平行四边形,平面,是棱上的一点,满足平面.(Ⅰ)证明:;(Ⅱ)设,,若为棱上一点,使得直线与平面所成角的大小为30°,求的值.19.(12分)在直角坐标系中,曲线的参数方程为(为参数,为实数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线与曲线交于,两点,线段的中点为.(1)求线段长的最小值;(2)求点的轨迹方程.20.(12分)为了解网络外卖的发展情况,某调查机构从全国各城市中抽取了100个相同等级地城市,分别调查了甲乙两家网络外卖平台(以下简称外卖甲、外卖乙)在今年3月的订单情况,得到外卖甲该月订单的频率分布直方图,外卖乙该月订单的频数分布表,如下图表所示.订单:(单位:万件)频数1223订单:(单位:万件)频数402020102(1)现规定,月订单不低于13万件的城市为“业绩突出城市”,填写下面的列联表,并根据列联表判断是否有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.业绩突出城市业绩不突出城市总计外卖甲外卖乙总计(2)由频率分布直方图可以认为,外卖甲今年3月在全国各城市的订单数(单位:万件)近似地服从正态分布,其中近似为样本平均数(同一组数据用该区间的中点值作代表),的值已求出,约为3.64,现把频率视为概率,解决下列问题:①从全国各城市中随机抽取6个城市,记为外卖甲在今年3月订单数位于区间的城市个数,求的数学期望;②外卖甲决定在今年3月订单数低于7万件的城市开展“订外卖,抢红包”的营销活动来提升业绩,据统计,开展此活动后城市每月外卖订单数将提高到平均每月9万件的水平,现从全国各月订单数不超过7万件的城市中采用分层抽样的方法选出100个城市不开展营销活动,若每按一件外卖订单平均可获纯利润5元,但每件外卖平均需送出红包2元,则外卖甲在这100个城市中开展营销活动将比不开展营销活动每月多盈利多少万元?附:①参考公式:,其中.参考数据:0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,则,.21.(12分)已知件次品和件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出件次品或者检测出件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用元,设表示直到检测出件次品或者检测出件正品时所需要的检测费用(单位:元),求的分布列.22.(10分)已知函数,不等式的解集为.(1)求实数,的值;(2)若,,,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
由可得,因为是边长为的正三角形,所以,故选A.2.D【解析】
由题设中所给的定义,方程的实数根叫做函数的“新驻点”,根据零点存在定理即可求出的大致范围【详解】解:由题意方程的实数根叫做函数的“新驻点”,对于函数,由于,,设,该函数在为增函数,,,在上有零点,故函数的“新驻点”为,那么故选:.【点睛】本题是一个新定义的题,理解定义,分别建立方程解出存在范围是解题的关键,本题考查了推理判断的能力,属于基础题..3.C【解析】
先求集合A,再用列举法表示出集合B,再根据交集的定义求解即可.【详解】解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},∴A∩B={0,1,2,3},故选:C.【点睛】本题主要考查集合的交集运算,属于基础题.4.C【解析】
先化简N={x|x(x+3)≤0}={x|-3≤x≤0},再根据M={x|﹣1<x<2},求两集合的交集.【详解】因为N={x|x(x+3)≤0}={x|-3≤x≤0},又因为M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故选:C【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.5.D【解析】
根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.6.A【解析】由题意得到该几何体是一个组合体,前半部分是一个高为底面是边长为4的等边三角形的三棱锥,后半部分是一个底面半径为2的半个圆锥,体积为故答案为A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.7.D【解析】
先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知:,所以,所以,所以该几何体的最长棱的长为故选:D【点睛】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.8.D【解析】
根据命题的否定的定义,全称命题的否定是特称命题求解.【详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D【点睛】本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.9.D【解析】
根据演绎推理进行判断.【详解】由①②④可知甲乙丁都不在远古村寨,必有丙同学去了远古村寨,由③可知必有甲去了原始森林,由④可知丁去了千丈瀑布,因此游玩千丈瀑布景点的同学是丁.故选:D.【点睛】本题考查演绎推理,掌握演绎推理的定义是解题基础.10.C【解析】
依次递推求出得解.【详解】n=1时,,n=2时,,n=3时,,n=4时,,n=5时,.故选:C【点睛】本题主要考查递推公式的应用,意在考查学生对这些知识的理解掌握水平.11.D【解析】
由题意,设第次爬行后仍然在上底面的概率为.①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,可得,根据求数列的通项知识可得选项.【详解】由题意,设第次爬行后仍然在上底面的概率为.①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,∴,即,∴,∴数列是以为公比的等比数列,而,所以,∴当时,,故选:D.【点睛】本题考查几何体中的概率问题,关键在于运用递推的知识,得出相邻的项的关系,这是常用的方法,属于难度题.12.C【解析】
由题可知,曲线与有公共点,即方程有解,可得有解,令,则,对分类讨论,得出时,取得极大值,也即为最大值,进而得出结论.【详解】解:由题可知,曲线与有公共点,即方程有解,即有解,令,则,则当时,;当时,,故时,取得极大值,也即为最大值,当趋近于时,趋近于,所以满足条件.故选:C.【点睛】本题主要考查利用导数研究函数性质的基本方法,考查化归与转化等数学思想,考查抽象概括、运算求解等数学能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13.70【解析】
根据二项式定理的通项公式,可得结果.【详解】由题可知:第5项为故第5项的的系数为故答案为:70.【点睛】本题考查的是二项式定理,属基础题。14.【解析】
如图,连接,证明平面平面EFG.因为直线平面EFG,所以点P在直线AC上.当时.线段的长度最小,再求此时的得解.【详解】如图,连接,因为E,F,G分别为AB,BC,的中点,所以,平面,则平面.因为,所以同理得平面,又.所以平面平面EFG.因为直线平面EFG,所以点P在直线AC上.在中,,故当时.线段的长度最小,最小值为.故答案为:【点睛】本题主要考查空间位置关系的证明,考查立体几何中的轨迹问题,意在考查学生对这些知识的理解掌握水平.15.【解析】
设抛物线上任意一点的坐标为,根据抛物线的定义求得,并求出对应的,即可得出结果.【详解】设抛物线上任意一点的坐标为,抛物线的准线方程为,由抛物线的定义得,解得,此时.因此,抛物线上到其焦点的距离为的点的个数为.故答案为:.【点睛】本题考查利用抛物线的定义求点的坐标,考查计算能力,属于基础题.16.【解析】
】由题意利用任意角的三角函数的定义,求得的值.【详解】∵的终边过点,若,.即答案为-2.【点睛】本题主要考查任意角的三角函数的定义和诱导公式,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)答案不唯一,见解析【解析】
(1)由题意根据和差角的三角函数公式可得,再根据同角三角函数基本关系可得的值;(2)在中,由余弦定理可得,解方程分别由三角形面积公式可得答案.【详解】解:(1)在中,因为,又已知,所以,因为,所以,于是.所以.(2)在中,由余弦定理得,得解得或,当时,的面积,当时,的面积.【点睛】本题考查正余弦定理理解三角形,涉及三角形的面积公式和分类讨论思想,属于中档题.18.(Ⅰ)证明见解析(Ⅱ)【解析】
(Ⅰ)由平面,可得,又因为是的中点,即得证;(Ⅱ)如图建立空间直角坐标系,设,计算平面的法向量,由直线与平面所成角的大小为30°,列出等式,即得解.【详解】(Ⅰ)如图,连接交于点,连接,则是平面与平面的交线,因为平面,故,又因为是的中点,所以是的中点,故.(Ⅱ)由条件可知,,所以,故以为坐标原点,为轴,为轴,为轴建立空间直角坐标系,则,,,,,,,设,则,设平面的法向量为,则,即,故取因为直线与平面所成角的大小为30°所以,即,解得,故此时.【点睛】本题考查了立体几何和空间向量综合,考查了学生逻辑推理,空间想象,数学运算的能力,属于中档题.19.(1)(2)【解析】
(1)将曲线的方程化成直角坐标方程为,当时,线段取得最小值,利用几何法求弦长即可.(2)当点与点不重合时,设,由利用向量的数量积等于可求解,最后验证当点与点重合时也满足.【详解】解曲线的方程化成直角坐标方程为即圆心,半径,曲线为过定点的直线,易知在圆内,当时,线段长最小为当点与点不重合时,设,化简得当点与点重合时,也满足上式,故点的轨迹方程为【点睛】本题考查了极坐标与普通方程的互化、直线与圆的位置关系、列方程求动点的轨迹方程,属于基础题.20.(1)见解析,有90%的把握认为“是否为业绩突出城市”与“选择网络外卖平台”有关.(2)①4.911②100万元.【解析】
(1)根据频率分布直方图与频率分布表,易得两个外卖平台中月订单不低于13万件的城市数量,即可完善列联表.通过计算的观测值,即可结合临界值作出判断.(2)①先根据所给数据求得样本平均值,根据所给今年3月订单数区间,并由及求得,.结合正态分布曲线性质可求得,再由二项分布的数学期望求法求解.②订单数低于7万件的城市有和两组,根据分层抽样的性质可确定各组抽取样本数.分别计算出开展营销活动与不开展营销活动的利润,比较即可得解.【详解】(1)对于外卖甲:月订单不低于13万件的城市数量为,对于外卖乙:月订单不低于13万件的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《热媒系统清扫方案》课件
- 耳坠市场发展现状调查及供需格局分析预测报告
- 气体引燃器市场需求与消费特点分析
- 《方协议申请步骤》课件
- 眼用制剂市场洞察报告
- 细颈瓶产业规划专项研究报告
- 手推运货车产品入市调查研究报告
- 第二单元 【B卷·培优卷】(含答案解析)(安徽专用)
- 浴室用桶产业运行及前景预测报告
- 国际象棋棋盘产品入市调查研究报告
- 高中语文人教版高中必修文言文定语后置
- 传统孝道人物虞舜
- 单机50mw风力发电项目可行性研究报告
- 长江三峡水利枢纽可行性报告
- 公司职称、证书补贴管理办法
- 医学心理学(广东药科大学)智慧树知到答案章节测试2023年
- 全国河流水文站坐标
- 单片机原理与应用说课
- 修辞手法课件(共46张PPT)
- GB/T 20307-2006纳米级长度的扫描电镜测量方法通则
- GB/T 13912-2020金属覆盖层钢铁制件热浸镀锌层技术要求及试验方法
评论
0/150
提交评论