2025届浙江省杭州五校高一数学第一学期期末教学质量检测模拟试题含解析_第1页
2025届浙江省杭州五校高一数学第一学期期末教学质量检测模拟试题含解析_第2页
2025届浙江省杭州五校高一数学第一学期期末教学质量检测模拟试题含解析_第3页
2025届浙江省杭州五校高一数学第一学期期末教学质量检测模拟试题含解析_第4页
2025届浙江省杭州五校高一数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届浙江省杭州五校高一数学第一学期期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数fxA.2π B.-πC.π D.π2.已知是球的直径上一点,,平面,为垂足,截球所得截面的面积为,则球的表面积为A. B.C. D.3.下列函数中是增函数的为()A. B.C. D.4.若cos(πA.-29C.-595.已知函数幂函数,且在其定义域内为单调函数,则实数()A. B.C.或 D.6.已知函数与的图像关于对称,则()A.3 B.C.1 D.7.下列函数中,与的奇偶性相同,且在上单调性也相同的是()A. B.C. D.8.已知原点到直线的距离为1,圆与直线相切,则满足条件的直线有A.1条 B.2条C.3条 D.4条9.已知函数f(x)=,若f(f(-1))=6,则实数a的值为()A.1 B.C.2 D.410.下列各组函数中,表示同一个函数的是()A.与B.与C.与D.与二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则的值为__________12.___________,__________13.已知函数f(x)=(5-a)x-a+1,x<1ax,x≥1,满足对任意都有成立,那么实数14.若函数在区间上是增函数,则实数取值范围是______15.写出一个能说明“若函数满足,则为奇函数”是假命题的函数:______16.已知点,,则以线段为直径的圆的标准方程是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知非空集合,非空集合(1)若,求(用区间表示);(2)若,求m的范围.18.已知函数(Ⅰ)求在区间上的单调递增区间;(Ⅱ)若,,求值19.已知函数的图像过点,且图象上与点最近的一个最低点是.(1)求的解析式;(2)求函数在区间上的取值范围.20.已知两个非零向量和不共线,,,(1)若,求的值;(2)若A、B、C三点共线,求的值21.已知,且(1)求的值;(2)求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意得ω=2,再代入三角函数的周期公式T=【详解】根据三角函数的周期公式T=2π函数fx=cos故选:C2、C【解析】设球的半径为,根据题意知球心到平面的距离,截球所得截面圆的半径为1,由,截面圆半径,球半径构成直角三角形,利用勾股定理,即可求出球半径,进而求出球的表面积.【详解】如图所示,设球的半径为,因为,所以,又因为截球所得截面的面积为,所以,在中,有,即,所以,故球的表面积,故选:C.【点睛】本题主要考查球的基本应用,答题关键点在于明确球心到截面的距离,截面圆半径,球半径三者可构成直角三角形,进而满足勾股定理.3、D【解析】根据基本初等函数的性质逐项判断后可得正确的选项.【详解】对于A,为上的减函数,不合题意,舍.对于B,为上的减函数,不合题意,舍.对于C,在为减函数,不合题意,舍.对于D,为上的增函数,符合题意,故选:D.4、C【解析】cos(π2-α)=sin5、A【解析】由幂函数的定义可得出关于的等式,求出的值,然后再将的值代入函数解析式进行检验,可得结果.【详解】因为函数为幂函数,则,即,解得或.若,函数解析式为,该函数在定义域上不单调,舍去;若,函数解析式,该函数在定义域上为增函数,合乎题意.综上所述,.故选:A.6、B【解析】根据同底的指数函数和对数函数互为反函数可解.【详解】由题知是的反函数,所以,所以.故选:B.7、C【解析】先求得函数的奇偶性和单调性,结合选项,利用函数的性质和单调性的定义,逐项判定,即可求解.【详解】由题意,函数满足,所以函数为偶函数,当时,可得,结合指数函数的性质,可得函数为单调递增函数,对于A中,函数为奇函数,不符合题意;对于B中,函数为非奇非偶函数函数,不符合题意;对于C中,函数的定义域为,且满足,所以函数为偶函数,设,且时,则,因为且,所以,所以,即,所以在为增函数,符合题意;对于D中,函数为非奇非偶函数函数,不符合题意.故选:C.8、C【解析】由已知,直线满足到原点的距离为,到点的距离为,满足条件的直线即为圆和圆的公切线,因为这两个圆有两条外公切线和一条内公切线.故选C.考点:相离两圆的公切线9、A【解析】利用分段函数的解析式,由里及外逐步求解函数值得到方程求解即可【详解】函数f(x)=,若f(f(-1))=6,可得f(-1)=4,f(f(-1))=f(4)=4a+log24=6,解得a=1故选A【点睛】本题考查分段函数应用,函数值的求法,考查计算能力10、B【解析】根据两个函数的定义域相同且对应关系也相同,逐项判断即可【详解】由于函数的定义域为,函数的定义域为,所以与不是同一个函数,故A错误;由于的定义域为,函数且定义域为,所以与是同一函数,故B正确;在函数中,,解得或,所以函数的定义域为,在函数中,,解得,所以的定义域为,所以与不是同一函数,故C错误;由于函数的定义域为,函数定义域为为,所以与不是同一函数,故D错误;故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据两角和的正弦公式即可求解.【详解】由题意可知,因为,所以,所以,则故答案为:.12、①.##-0.5②.2【解析】根据诱导公式计算即可求出;根据对数运算性质可得【详解】由题意知,;故答案为:13、【解析】利用求解分段函数单调性的方法列出不等式关系,由此即可求解【详解】由已知可得函数在R上为单调递增函数,则需满足,解得,所以实数a的取值范围为,故答案为:14、【解析】令,由题设易知在上为增函数,根据二次函数的性质列不等式组求的取值范围.【详解】由题设,令,而为增函数,∴要使在上是增函数,即在上为增函数,∴或,可得或,∴的取值范围是.故答案为:15、(答案不唯一)【解析】根据余弦型函数的性质求解即可.【详解】解:因为,所以的周期为4,所以余弦型函数都满足,但不是奇函数故答案为:16、【解析】,,中点坐标为,圆的半径以为直径的圆的标准方程为,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)分别解出集合A、B,再求;(2)由可得,列不等式即可求出m的范围.【小问1详解】由不等式的解为,即.由,即【小问2详解】由可知,,只需解得.即m的范围为.18、(Ⅰ),;(Ⅱ).【解析】(Ⅰ)利用三角恒等变换思想化简函数的解析式为,求得函数在上的单调递增区间,与取交集可得出结果;(Ⅱ)由可得出,利用同角三角函数的基本关系可求得的值,利用两角和的正弦公式可求得的值【详解】(Ⅰ)令,,得,令,得;令,得.因此,函数在区间上的单调递增区间为,;(Ⅱ)由,得,,又,,因此,【点睛】本题考查正弦型函数的单调区间的求解,同时也考查了利用两角和的正弦公式求值,考查计算能力,属于中等题.19、(1);(2).【解析】(1)根据,两点可求出和周期,再由周期公式即可求出,再由即可求出;(2)根据求出函数的值域,再利用换元法令即可求出函数的取值范围.【详解】(1)根据题意可知,,,所以,解得,所以,又,所以,又,所以,所以(2)因为,所以,所以,所以,令,即,则,当时,取得最小值,当时,取得最大值7,故的取值范围是.【点睛】方法点睛:由图象确定系数,通常采用两种方法:①如果图象明确指出了周期的大小和初始值(第一个零点的横坐标)或第二,第三(或第四,第五)点横坐标,可以直接解出和,或由方程(组)求出;②代入点的坐标,通过解最简单的三角函数方程,再结合图象确定和.20、(1)-1(2)-1【解析】(1)根据即可得出,,由即可得出1+k=0,从而求出k的值;(2)根据A,B,C三点共线即可得出,从而可得出,根据平面向量基本定理即可得出,解出k即可【详解】解:(1);∴=;∵;∴k+1=0;∴k=-1;(2)∵A,B,C三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论