版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省新乡市第七中学2025届高一上数学期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数在上是增函数,则实数k的取值范围是()A. B.C. D.2.已知直线ax+4y-2=0与2x-5y+b=0互相垂直,垂足为(1,c),则a+b+c的值为()A.-4 B.20C.0 D.243.甲、乙两人破译一份电报,甲能独立破译的概率为0.3,乙能独立破译的概率为0.4,且两人是否破译成功互不影响,则两人都成功破译的概率为()A.0.5 B.0.7C.0.12 D.0.884.函数在区间上的最大值为2,则实数的值为A.1或 B.C. D.1或5.函数的部分图象如图,则()A. B.C. D.6.若扇形圆心角的弧度数为,且扇形弧所对的弦长也是,则这个扇形的面积为A. B.C. D.7.函数的零点所在区间是A. B.C. D.8.函数的定义域为()A.(0,2] B.[0,2]C.[0,2) D.(0,2)9.已知是R上的奇函数,且对,有,当时,,则()A.40 B.C. D.10.平行线与之间的距离等于()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.当时,函数的值总大于,则的取值范围是________12.已知任何一个正实数都可以表示成,则的取值范围是________________;的位数是________________.(参考数据)13.函数的单调递增区间为___________.14.已知表示不超过实数的最大整数,如,,为取整函数,是函数的零点,则__________15.已知不等式ax2+bx+2>0的解集为{x|-1<x<2},则不等式2x2+bx+a<0的解为______16.若函数的定义域为,则函数的定义域为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数的定义域且,对定义域D内任意两个实数,,都有成立(1)求的值并证明为偶函数;18.已知(1)求的值(2)的值19.已知函数的值域为,函数.(Ⅰ)求;(Ⅱ)当时,若函数有零点,求的取值范围,并讨论零点的个数.20.某行业计划从新的一年2020年开始,每年的产量比上一年减少的百分比为,设n年后(2020年记为第1年)年产量为2019年的a倍.(1)请用a,n表示x.(2)若,则至少要到哪一年才能使年产量不超过2019年的25%?参考数据:,.21.利用拉格朗日(法国数学家,1736-1813)插值公式,可以把二次函数表示成的形式.(1)若,,,,,把的二次项系数表示成关于f的函数,并求的值域(此处视e为给定的常数,答案用e表示);(2)若,,,,求证:.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据二次函数的对称轴在区间的左边,即可得到答案;【详解】由题意得:,故选:C2、A【解析】由垂直求出,垂足坐标代入已知直线方程求得,然后再把垂僄代入另一直线方程可得,从而得出结论【详解】由直线互相垂直可得,∴a=10,所以第一条直线方程为5x+2y-1=0,又垂足(1,c)在直线上,所以代入得c=-2,再把点(1,-2)代入另一方程可得b=-12,所以a+b+c=-4.故选:A3、C【解析】根据相互独立事件的概率乘法公式,即可求解.【详解】由题意,甲、乙分别能独立破译的概率为和,且两人是否破译成功互不影响,则这份电报两人都成功破译的概率为.C.4、A【解析】化简可得,再根据二次函数的对称轴与区间的位置关系,结合正弦函数的值域分情况讨论即可【详解】因,令,故,当时,在单调递减所以,此时,符合要求;当时,在单调递增,在单调递减故,解得舍去当时,在单调递增所以,解得,符合要求;综上可知或故选:A.5、C【解析】先利用图象中的1和3,求得函数的周期,求得,最后根据时取最大值1,求得,即可得解【详解】解:根据函数的图象可得:函数的周期为,∴,当时取最大值1,即,又,所以,故选:C【点睛】本题主要考查了由的部分图象确定其解析式,考查了五点作图的应用和图象观察能力,属于基本知识的考查.属于基础题.6、A【解析】分析:求出扇形的半径,然后利用扇形的面积公式求解即可.详解:由题意得扇形的半径为:又由扇形面积公式得该扇形的面积为:.故选:A.点睛:本题是基础题,考查扇形的半径的求法、面积的求法,考查计算能力,注意扇形面积公式的应用.7、B【解析】通过计算,判断出零点所在的区间.【详解】由于,,,故零点在区间,故选B.【点睛】本小题主要考查零点的存在性定理的应用,考查函数的零点问题,属于基础题.8、A【解析】根据对数函数的定义域,结合二次根式的性质进行求解即可.【详解】由题意可知:,故选:A9、C【解析】根据已知和对数运算得,,再由指数运算和对数运算法则可得选项.【详解】因为,,故,.∵,故.故选:C【点睛】关键点点睛:解决本题类型的问题的关键在于:1、由已知得出抽象函数的周期;2、根据函数的周期和对数运算法则将自变量转化到已知范围中,可求得函数值.10、C【解析】,故选二、填空题:本大题共6小题,每小题5分,共30分。11、或,【解析】由指数函数的图象和性质可得即可求解.【详解】因为时,函数的值总大于,根据指数函数的图象和性质可得,解得:或,故答案为:或,12、①.②.【解析】根据对数函数的单调性及对数运算、对数式指数式的转化即可求解.【详解】因为,所以,由,故知,共有31位.故答案为:;3113、【解析】根据复合函数“同增异减”的原则即可求得答案.【详解】由,设,对称轴为:,根据“同增异减”的原则,函数的单调递增区间为:.故答案为:.14、2【解析】由于,所以,故.【点睛】本题主要考查对新定义概念的理解,考查利用二分法判断函数零点的大概位置.首先研究函数,令无法求解出对应的零点,考虑用二分法来判断,即计算,则零点在区间上.再结合取整函数的定义,可求出的值.15、【解析】不等式的解集为{x|-1<x<2},可得-1,2是一元二次方程的两个实数根,且a<0,利用根与系数的关系可得a,b,即可得出【详解】解:∵不等式的解集为{x|-1<x<2},∴-1,2是一元二次方程的两个实数根,且a<0,解得解得a=-1,b=1.则不等式化为,解得.不等式的解集为.故答案为.【点睛】本题考查了一元二次不等式的解法、一元二次方程的根与系数的关系,考查了计算能力,属于中档题16、【解析】利用的定义域,求出的值域,再求x的取值范围.【详解】的定义域为即的定义域为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),证明见解析(2)(3)【解析】(1)取得到,取得到,取得到,得到答案.(2)证明函数在上单调递增,在上单调递减,得到,结合定义域得到答案.(3)根据函数单调性和奇偶性得到,考虑,,三种情况,得到函数的最值,解不等式得到答案.【小问1详解】取得到,得到,取得到,得到,取得到,即,故函数为偶函数.【小问2详解】设,则,,故,即,函数单调递减.函数为偶函数,故函数在上单调递增.,故,且,解得.【小问3详解】,根据(2)知:,,恒成立,故,,当时,,当时,,当时,,当,即时等号成立,,故.综上所述:,解得,,故.18、(1)(2)【解析】(1)先求出的值,再求出后可得的值;(2)先求出,再利用二倍角公式化简三角函数式,代入前面的结果可得所求的值.【小问1详解】对于,两边平方得,所以,∴,∵且,,所以,;【小问2详解】联立,解得,∴原式=.19、(Ⅰ);(Ⅱ)答案见详解.【解析】(Ⅰ)对分段函数求值域,分别求出每一段函数的值域,再求其并集即可;(Ⅱ)函数有零点,即表示方程有根,与函数图像有交点,因而将换元,利用二次函数性质求出其值域,再数形结合讨论零点个数即可.【详解】(Ⅰ)如下图所示:当时,;当时,,所以函数的值域为;(Ⅱ)若函数有零点,即方程有根,即与函数图像有交点,令,,当时,,此时,即函数值域为,故而:当时,函数有零点,且当或时,函数有一个零点;当时,函数有两个零点.【点睛】(1)对分段函数求值域,先求出每一段函数的值域,再求其并集即可,也可利用函数图像去求;(2)函数零点问题一般可以转换为方程的根,或者两函数图像交点的问题,在答题时,需要根据实际情况进行转换,本题利用了转化及数形结合的思想,属于中档题.20、(1)(2)2033【解析】(1)每年的产量比上一年减少的百分比为,那么n年后的产量为2019年的,即得;(2)将代入(1)中得到式子,解n,n取正整数。【详解】(1)依题意得,即,即.(2)由题得,即,则,即,则,又,,∴n的最小值为14.故至少要到2033年才能使年产能不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度智能语音助手语音数据采集与隐私保护协议5篇
- 区域内循环经济产业园
- 休闲娱乐项目的品牌价值提升
- 2025年度消防设施运行维护劳务分包合同3篇
- 2024年度个性化定制汽车租赁合作协议2篇
- 2024年期白酒分销商协议协议范本版B版
- 2024年离婚后养老保险转移合同
- 2025年度水果采摘园门票与产品组合销售合同3篇
- 2022高考英语北京市完形填空专题选练及答案2
- 2024年租赁合同标的物为5辆豪华轿车
- 2023年鞍山市海城市教育局毕业生招聘笔试真题
- 北京2025年首都医科大学附属北京友谊医院招聘140人历年参考题库(频考版)含答案解析
- 辽宁省抚顺县2024-2025学年九年级上学期期末物理试卷(含答案)
- 2024-2025学年安徽省合肥市巢湖市三年级数学第一学期期末达标测试试题含解析
- 浙江省宁波市九校2023-2024学年高一上期末联考生物试题
- 2023-2024人教版上学期小学英语三年级上册期末试卷
- 冬季施工阶段安全事故案例分析及对策
- 施工现场消防安全操作规程
- A4标签打印模板
- (完整版)工程项目管理组织机构
- 工程质量检测内容包括哪些?
评论
0/150
提交评论