




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省深圳市平湖中学高二上数学期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义运算:.已知,都是锐角,且,,则()A. B.C. D.2.直线的倾斜角的大小为()A. B.C. D.3.已知两个向量,,且,则的值为()A.-2 B.2C.10 D.-104.离心率为,长轴长为6的椭圆的标准方程是A. B.或C. D.或5.在长方体中,()A. B.C. D.6.已知椭圆的离心率为.双曲线的渐近线与椭圆有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆的方程为A. B.C. D.7.等比数列满足,,则()A.11 B.C.9 D.8.①“若,则互为相反数”的逆命题;②“若,则”的逆否命题;③“若,则”的否命题.其中真命题的个数为()A.0 B.1C.2 D.39.下列命题中正确的个数为()①若向量,与空间任意向量都不能构成基底,则;②若向量,,是空间一组基底,则,,也是空间的一组基底;③为空间一组基底,若,则;④对于任意非零空间向量,,若,则A.1 B.2C.3 D.410.在正四面体中,棱长为2,且E是棱AB中点,则的值为A. B.1C. D.11.已知正的边长为,那么的平面直观图的面积为()A. B.C. D.12.已知等差数列,且,则()A.3 B.5C.7 D.9二、填空题:本题共4小题,每小题5分,共20分。13.某班有位同学,将他们从至编号,现用系统抽样的方法从中选取人参加文艺演出,抽出的编号从小到大依次排列,若排在第一位的编号是,那么第四位的编号是______14.等比数列的前项和为,则的值为_____15.已知函数,则______16.已知△ABC的周长为20,且顶点,则顶点A的轨迹方程是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线C:(,)的一条渐近线的方程为,双曲线C的右焦点为,双曲线C的左、右顶点分别为A,B(1)求双曲线C的方程;(2)过右焦点F的直线l与双曲线C的右支交于P,Q两点(点P在x轴的上方),直线AP的斜率为,直线BQ的斜率为,证明:为定值18.(12分)在二项式的展开式中;(1)若,求常数项;(2)若第4项的系数与第7项的系数比为,求:①二项展开式中的各项的二项式系数之和;②二项展开式中各项的系数之和19.(12分)已知抛物线的方程为,点,过点的直线交抛物线于两点(1)求△OAB面积的最小值(为坐标原点);(2)是否为定值?若是,求出该定值;若不是,说明理由20.(12分)已知是公差不为0的等差数列,,且成等比数列(1)求数列通项公式;(2)设,求数列的前项和21.(12分)设F为椭圆的右焦点,过点的直线与椭圆C交于两点.(1)若点B为椭圆C的上顶点,求直线的方程;(2)设直线的斜率分别为,,求证:为定值.22.(10分)设关于x的不等式的解集为A,关于x的不等式的解集为B(1)求集合A,B;(2)若是的必要不充分条件,求实数m的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】,只需求出与的正、余弦值即可,用平方关系时注意角的范围.【详解】解:因为,都是锐角,所以,,因为,所以,即,,所以,,因为,所有,故选:B.【点睛】信息给予题,已知三角函数值求三角函数值,考查根据三角函数的恒等变换求值,基础题.2、B【解析】由直线方程,可知直线的斜率,设直线的倾斜角为,则,又,所以,故选3、C【解析】根据向量共线可得满足的关系,从而可求它们的值,据此可得正确的选项.【详解】因为,故存在常数,使得,所以,故,所以,故选:C.4、B【解析】试题解析:当焦点在x轴上:当焦点在y轴上:考点:本题考查椭圆的标准方程点评:解决本题的关键是焦点位置不同方程不同5、D【解析】根据向量的运算法则得到,带入化简得到答案.【详解】在长方体中,易知,所以.故选:D.6、D【解析】由题意,双曲线的渐近线方程为,∵以这四个交点为顶点的四边形为正方形,其面积为16,故边长为4,∴(2,2)在椭圆C:上,∴,∵,∴,∴,∴∴椭圆方程为:.故选D.考点:椭圆的标准方程及几何性质;双曲线的几何性质.7、B【解析】由已知结合等比数列的性质即可求解.【详解】由数列是等比数列,得:,故选:B8、B【解析】写出逆命题判断①;写出逆否命题判断②;写出否命题判断③.【详解】①:“若,则互为相反数”的逆命题为:“若互为相反数,则”,是真命题;②:“若,则”的逆否命题为:“若,则”.因为当时,有,但不成立.故“若,则”是假命题.③:“若,则”的否命题为:“若,则”.因为当时,有,但是,即不成立.故“若,则”是假命题..故选:B9、C【解析】根据题意、空间向量基底的概念和共线的运算即可判断命题①②③,根据空间向量的平行关系即可判断命题④.【详解】①:向量与空间任意向量都不能构成一个基底,则与共线或与其中有一个为零向量,所以,故①正确;②:由向量是空间一组基底,则空间中任意一个向量,存在唯一的实数组使得,所以也是空间一组基底,故②正确;③:由为空间一组基底,若,则,所以,故③正确;④:对于任意非零空间向量,,若,则存在一个实数使得,有,又中可以有为0的,分式没有意义,故④错误.故选:C10、A【解析】根据题意,由正四面体的性质可得:,可得,由E是棱中点,可得,代入,利用数量积运算性质即可得出.【详解】如图所示由正四面体的性质可得:可得:是棱中点故选:【点睛】本题考查空间向量的线性运算,考查立体几何中的垂直关系,考查转化与化归思想,属于中等题型.11、D【解析】作出正的实际图形和直观图,计算出直观图的底边上的高,由此可求得的面积.【详解】如图①②所示的实际图形和直观图.由斜二测画法可知,,,在图②中作于,则.所以.故选:D.【点睛】本题考查直观图面积的计算,考查计算能力,属于基础题.12、B【解析】根据等差数列的性质求得正确答案.【详解】由于数列是等差数列,所以.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、29【解析】根据给定信息利用系统抽样的特征直接计算作答.【详解】因系统抽样是等距离抽样,依题意,相邻两个编号相距,所以第四位的编号是.故答案为:2914、【解析】根据等比数列前项和公式的特点列方程,解方程求得的值.【详解】由于等比数列前项和,本题中,故.故填:.【点睛】本小题主要考查等比数列前项和公式的特点,考查观察与思考的能力,属于基础题.15、【解析】根据导数的定义求解即可【详解】由,得,所以,故答案为:16、.【解析】由周长确定,故轨迹是椭圆,注意焦点位置和抠除不符合条件的点即可.【详解】解:,所以,,则顶点A的轨迹方程是.故答案为:.【点睛】考查椭圆定义的应用,基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)由题可得,,即求;(2)由题可设直线方程与双曲线方程联立,利用韦达定理法即证【小问1详解】由题意可知在双曲线C中,,,,解得所以双曲线C的方程为;【小问2详解】证法一:由题可知,设直线,,,由,得,则,,∴,,;当直线的斜率不存在时,,此时.综上,为定值证法二:设直线PQ方程为,,,联立得整理得,由过右焦点F的直线l与双曲线C的右支交于P,Q两点,则解得,,,,由双曲线方程可得,,,,∵,∴,,证法三:设直线PQ方程为,,,联立得整理得,由过右焦点F的直线l与双曲线C的右支交于P,Q两点,则解得,∴,,由双曲线方程可得,,则,所以,,,∴为定值18、(1)60(2)①1024;②1【解析】(1)根据二项式定理求解(2)根据二项式定理与条件求解,二项式系数之和为,系数和可赋值【小问1详解】若,则,(,…,9)令∴∴常数项为.【小问2详解】,(,…,),解得①②令,得系数和为19、(1);(2)是,该定值.【解析】(1)根据弦长公式、点到直线距离公式,结合三角形面积公式进行求解即可;(2)根据两点间距离公式,结合一元二次方程根与系数的关系进行求解即可.【小问1详解】显然直线存在斜率,设直线的方程为:,所以有,设,则有,,原点到直线的距离为:,△OAB的面积为:,当时,有最小值,最小值为;【小问2详解】是定值,理由如下:由(1)可知:,,【点睛】关键点睛:利用一元二次方程根与系数关系是解题的关键.20、(1)(2)【解析】(1)设等差数列的公差为,依题意得到方程组,解得、,即可求出数列的通项公式;(2)由(1)可得,再利用分组求和法求和即可;【小问1详解】解:设等差数列的公差为,由题意,得,解得或,因为,所以【小问2详解】解:当时,,所以21、(1);(2)证明见解析.【解析】(1)求出的直线方程,结合椭圆方程可求的坐标,从而可求的直线方程;(2)设,直线(或),则可用两点的坐标表示或,联立直线的方程和椭圆的方程,消元后利用韦达定理可化简前者从而得到要证明的结论【详解】(1)若B为椭圆的上顶点,则.又过点,故直线由可得,解得即点,又,故直线;(2)设,方法一:设直线,代入椭圆方程可得:所以,故,又均不为0,故,即为定值方法二:设直线,代入椭圆方程可得:所以所以,即,所以,即为定值方法三:设直线,代入椭圆方程可得:所以,所以所以,把代入得方法四:设直线,代入椭圆的方程可得,则所以.因为,代入得.【点睛】思路点睛:直线与圆锥曲线的位置关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024学年人教版(2015)小学信息技术四年级下册修饰表格有方法(教学设计)
- 个人简历与竞聘报告-1
- 3 古诗三首 寒食 教学设计-2023-2024学年语文六年级下册统编版
- Module 9 Experience(教学设计)-2023-2024学年外研版(三起)英语五年级下册
- 毕业论文核心研究成果汇报
- 2024-2025学年高中语文 第六课 语言的艺术 4 第四节 入乡问俗-语言和文化教学设计 新人教版选修《语言文字应用》
- 《角》(教学设计)-2024-2025学年沪教版数学四年级上册
- 2024-2025学年七年级历史下册 第二单元 辽宋夏金元时期:民族关系发展和社会变化 第10课 蒙古族的兴起与元朝的建立教学设计 新人教版
- 18古诗三首《江南春》教学设计-2024-2025学年语文六年级上册统编版
- 三年级英语下册 Module 7 Unit 1 We fly kites in spring教学设计 外研版(三起)
- 学习通《《诗经》导读》习题(含答案)
- 2025-2030智能代步车产业市场现状供需分析及重点企业投资评估规划分析研究报告
- 全媒体内容编辑技巧试题及答案
- 2025届广东省燕博园联考(CAT)高三下学期3月模拟测试物理试题(含答案)
- 2025-2030中国SP导电炭黑市场现状调研与前景研究报告
- 华阳煤矿考试试题及答案
- 2025民法典婚姻家庭编司法解释二解读
- 眼视光技术考试题(含答案)
- 2025年时政题库及答案(100题)
- 八项规定试题及答案
- 人力资源许可证制度(服务流程、服务协议、收费标准、信息发布审查和投诉处理)
评论
0/150
提交评论