基于元学习和对称性的数据高效深度学习探索 Towards data-efficient deep learning with meta-learning and symmetries_第1页
基于元学习和对称性的数据高效深度学习探索 Towards data-efficient deep learning with meta-learning and symmetries_第2页
基于元学习和对称性的数据高效深度学习探索 Towards data-efficient deep learning with meta-learning and symmetries_第3页
基于元学习和对称性的数据高效深度学习探索 Towards data-efficient deep learning with meta-learning and symmetries_第4页
基于元学习和对称性的数据高效深度学习探索 Towards data-efficient deep learning with meta-learning and symmetries_第5页
已阅读5页,还剩225页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

TowardsData-EfficientDeepLearningwithMeta-LearningandSymmetries

JinXu

BalliolCollege

UniversityofOxford

AthesissubmittedforthedegreeofDoctorofPhilosophyinStatistics

Trinity2023

2

Acknowledgements

Firstandforemost,Iwanttoexpressmydeepgratitudetomysupervisors,Prof.Yee

WhyeTehandDr.TomRainforth.Theirunwaveringsupport,carefulguidance,andconstantinspirationhavebeeninvaluablethroughoutmyPhDjourney.Ithasbeenaprivilegetobementoredbythem,whoIregardasresearchrolemodels.Theirdepthandbreadthofknowledgehavebeenbothhumblingandenlightening.SpecialacknowledgementgoestoYeeWhye,whohasalwaysbeenconsiderateandreadytohelpintoughtimes.MyheartfeltthanksgotoTomforhisguidanceduringthechallengingtimesbroughtonbythepandemic.

IwouldliketoextendmygratitudetoallmycollaboratorsHyunjikKim,Jean-FrancoisTon,AdamKosiorek,EmilienDupont,andKasparMärtens.TheirexpertiseandfeedbackhavebeencrucialinimprovingmyworkandIlearnagreatdealfromthem.AbigthankyoutoProf.RyanAdamsfromPrincetonUniversityandtomyinternshiphosts,JamesHensmanandMaxCrociatMicrosoftResearch.TheirmentorshipoutsideofmyPhDlifehasbeenanindispensablepartofmyresearchexperience.

Moreover,Ifeelextremelyfortunatetobesurroundedbyamazingandcaringfriendswhosenamesarenotpossibletoenumeratehere.AmongthemareEmilienDupont,Jean-FrancoisTon,CharlineLeLan,BobbyHe,SheheryarZaidi,QinyiZhang,GuneetDhillon,AndrewCampbell,ChrisWilliams,CarloAlfano,FaaizTaufiq,AnnaMenacherandothersfromourlovelyoffice1.17,HanwenXing,YanzhaoYang,NingMiao,ChaoZhang,Yutonglu,YixuanHe,XiLin,YuanZhou,FanWu,BohaoYaofromthedepartmentofstatistics,DunhongJin,SihanZhou,SijiaYao,HuiningYang,KevinWang,NataliaHong,HangYuan,KangningZhang,ChengyangWangandmanyothersfromotherdepartmentsatOxford,DenizOktay,SulinLiu,JennyZhanandothersfromPrincetonUniversity,internshippeersatMicrosoftResearchincludingAlexanderMeulemans,SalehAshkboosfromETH.

Aspecialthankstoalluniversityanddepartmentstaff,especiallyChrisCullenforhiskindandpatientsupportduringdifficulttimes,andtoJoannaStoneham,Stuart

3

McRobert,andotherswhoensuredasmoothPhDexperience.

Finally,aboveall,mydeepestthanksgotoYifanYuforherloveandcompanionship.SheimmenselyenrichedmytimeinOxford,bringingcolourandjoytomylife.Additionally,IameternallygratefultomyparentsChengxiangXuandFengChenforgivingmethefreedomtopursuemypassionsandfortheirunquestioningsupportthroughoutthisjourney.

4

Abstract

Recentadvancesindeeplearninghavebeensignificantlypropelledbytheincreasingavailabilityofdataandcomputationalresources.Whiletheabundanceofdataenablesmodelstoperformwellincertaindomains,therearereal-worldapplications,suchasinthemedicalfield,wherethedataisscarceordifficulttocollect.Furthermore,therearealsoscenarioswherethelargedatasetisbetterviewedaslotsofrelatedsmalldatasets,andthedatabecomesinsufficientforthetaskassociatedwithoneofthesmalldatasets.Itisalsonoteworthythathumanintelligenceoftenrequiresonlyahandfulofexamplestoperformwellonnewtasks,emphasizingtheimportanceofdesigningdata-efficientAIsystems.Thisthesisdelvesintotwostrategiestoaddressthischallenge:meta-learningandsymmetries.Meta-learningapproachesthedata-richenvironmentasacollectionofmanysmall,individualdatasets.Eachofthesesmalldatasetsrepresentsadistincttask,yetthereisunderlyingsharedknowledgebetweenthem.Harnessingthissharedknowledgeallowsforthedesignoflearningalgorithmsthatcanefficientlyaddressnewtaskswithinsimilardomains.Incomparison,symmetryisaformofdirectpriorknowledge.Byensuringthatmodels’predictionsremainconsistentdespiteanytransformationtotheirinputs,thesemodelsenjoybettersampleefficiencyandgeneralization.

Inthesubsequentchapters,wepresentnoveltechniquesandmodelswhichallaimatimprovingthedataefficiencyofdeeplearningsystems.Firstly,wedemonstratethesuccessofencoder-decoderstylemeta-learningmethodsbasedonConditionalNeuralProcesses(cnps).Secondly,weintroduceanewclassofexpressivemeta-learnedstochasticprocessmodelswhichareconstructedbystackingsequencesofneuralparameterisedMarkovtransitionoperatorsinfunctionspace.Finally,weproposegroupequivariantsubsampling/upsamplinglayerswhichtacklesthelossofequivarianceinconventionalsubsampling/upsamplinglayers.Theselayerscanbeusedtoconstructend-to-endequivariantmodelswithimproveddata-efficiency.

i

Contents

1Introduction

1

1.1Motivation

1

1.2Thesisoutline

3

1.3Papers

4

2Background

6

2.1Meta-learning

6

2.1.1Conventionalsupervisedlearningandmeta-learning

6

2.1.2Differentviewsofmeta-learning

8

2.1.3Commonapproachestometa-learning

10

2.2Neuralprocesses

11

2.2.1Stochasticprocesses

12

2.2.2Neuralprocessesasstochasticprocesses

12

2.2.3Neuralprocesstrainingobjectives

13

2.2.4Ameta-learningperspective

14

2.3Symmetriesindeeplearning

15

2.3.1Group,cosetandquotientspace

15

2.3.2Grouphomomorphism,groupactionsandgroupequivariance

.16

2.3.3Homogeneousspacesandliftingfeaturemaps

16

2.3.4FeaturemapsinG-CNNs

17

2.3.5Groupequivariantneuralnetworks

18

3MetaFun:Meta-LearningwithIterativeFunctionalUpdates

20

3.1Introduction

20

3.2MetaFun

22

3.2.1Learningfunctionaltaskrepresentation

23

3.2.2MetaFunforregressionandclassification

26

3.3Relatedwork

27

ii

3.4Experiments

31

3.4.11-Dfunctionregression

31

3.4.2Classification:miniImageNetandtieredImageNet

33

3.4.3Ablationstudy

36

3.5Conclusionsandfuturework

37

3.6Supplementarymaterials

38

3.6.1Functionalgradientdescent

38

ReproducingkernelHilbertspace

38

Functionalgradients

39

Functionalgradientdescent

40

3.6.2Experimentaldetails

40

4DeepStochasticProcessesviaFunctionalMarkovTransitionOpera-

tors

44

4.1Introduction

44

4.2Background

46

4.3Markovneuralprocesses

47

4.3.1AmoregeneralformofNeuralProcessdensityfunctions

47

4.3.2Markovchainsinfunctionspace

48

4.3.3Parameterisation,inferenceandtraining

49

4.4Relatedwork

52

4.5Experiments

54

4.5.11Dfunctionregression

54

4.5.2Contextualbandits

55

4.5.3Geologicalinference

56

4.6Discussion

58

4.7Supplementarymaterials

59

4.7.1Proofs

59

60

4.7.2Implementationdetails

63

4.7.3Data

63

Modelarchitecturesandhyperparameters

65

Computationalcostsandresources

66

4.7.4Broaderimpacts

67

iii

5GroupEquivariantSubsampling

68

5.1Introduction

68

5.2Equivariantsubsamplingandupsampling

70

5.2.1TranslationequivariantsubsamplingforCNNs

70

5.2.2Groupequivariantsubsamplingandupsampling

72

5.2.3ConstructingΦ

75

5.3Application:Groupequivariantautoencoders

75

5.4Relatedwork

77

5.5Experiments

79

5.5.1Basicproperties:Equivariance,disentanglementandout-of-

distributiongeneralization

80

5.5.2Singleobject

81

5.5.3Multipleobjects

82

5.6Conclusions,limitationsandfuturework

83

5.7Supplementarymaterials

84

5.7.1Equivariantsubsamplingandupsampling

84

ConstructingΦ

84

Multiplesubsamplinglayers

85

5.7.2Groupequivariantautoencoders

87

5.7.3Proofs

88

5.7.4Implementationdetails

93

Data

93

Modelarchitectures

94

Hyperparameters

95

Computationalresources

95

6ConclusionsandFutureOutlook

96

Bibliography

99

1

Chapter1

Introduction

1.1Motivation

Recentbreakthroughsindeeplearningcanbelargelyattributedtothevastamountofdataavailableandtheadvancementofcomputationalresources[

Dengetal.,

2009,

Rainaetal.,

2009,

Silveretal.,

2016,

Jumperetal.,

2021,

Brownetal.,

2020a]

.Whiletrainingonlargedatasetsenablesdeeplearningmodelstoexcelincertaintasks,manyreal-worldapplicationsonlyprovidelimiteddataforaspecifictask.Forinstance,inmedicalfields,obtainingdata,especiallyforrarediseases,ischallengingandoftenexpensive.Indrugdevelopmentorrecommendationsystems,therewillalwaysbeinsufficientdatafornewdrugs/users,eventhoughabundantdataexistsforotherdrugsorusers.Therefore,toapplydeeplearningtothesefields,itisvitaltodevelopsystemsthataredata-efficient.Moreover,foradvancedAIsystems,data-efficiencycanbeacrucialingredient:Firstly,AIsystemsshouldbeabletogeneralizebeyondspecificdatadistributionswithoutrelyingondata;forinstance,animagerecognitionsystemshouldrecognizeobjectsregardlessoftheirpositionororientation.Secondly,humanintelligencecanoftensolvenewtaskswithjustafewexamples.Thus,forAItoemulatehuman-likeintelligence,itshouldalsohavesuchcapability.

FromaBayesianperspective,learninginvolvesupdatingourbeliefsaboutamodel(representedbyθ)giventhedata,i.e.p(θ|Ddata).Foramodeltolearnefficientlyfromasmallamountofdata,it’simportanttostartwithagoodinitialguessor"prior"p(θ).Inthispaper,welookattwodirectionstoobtainsuchpriorfordata-efficientlearning:Thefirstismeta-learning,whichlearnstheprior(orthesharedknowledge)from

2

similartasks.Itcanbeunderstoodas"learningtolearnmoreefficiently".Thesecondissymmetriesindeeplearning,whichservesasaknownpriorforcertainproblems.Symmetry,afundamentalconceptinphysics,representsaformofpriorknowledgethatisubiquitouslyobservedthroughoutourphysicalworld.

Meta-learningtacklesaspecificscenarioinwhichthevastpoolofdatacanbeviewedasmanysmalldatasets,eachrepresentingadistincttask.Yet,thesetaskscontainunderlyingsharedknowledgethatcanbeharnessedtoaddressnewtaskswithinthesamecategory.Thisscenarioisprevalentinmanyapplications.Take,forinstance,anonlineretailcompanywithdatafromcustomersworldwide.Thedataassociatedwitheachuseristypicallysparse.Inthiscontext,predictingbehavioursforeachuserconstitutesanindividualtask,butpatternsamongdifferentusersoftenexhibitsimilarities.Meta-learningalgorithmsaredesignedtohandlesuchcircumstances.Thegoalofmeta-learningistolearndata-efficientlearningalgorithmsthatcanlaterbeappliedtoaparticulartask.Thetrainingdataformeta-learningcomprisesnumerousrelatedtasks,eachwithalimitedsetofdatapoints.Afterthemeta-learningphase,thelearnedlearningalgorithmscansolveanewtaskinadata-efficientmanner.Incontrast,theaimofconventionalsupervisedlearningisjusttolearnapredictivemodel.

Meta-learningproblemscanbetackledfromvariousperspectives,andtheseap-proachescanbeunderstoodthroughdifferentviewpointssuchasoptimization-basedap-proaches[

RaviandLarochelle,

2016,

Finnetal.,

2017a

],metric-basedapproaches[

Koch,

2015

,

Vinyalsetal.,

2016,

Sungetal.,

2018,

Snelletal.,

2017],andmodel-based

approaches[

Santoroetal.,

2016,

Mishraetal.,

2018,

Garneloetal.,

2018a

],amongothers.Notethattheseviewsarenotexclusive.Forexample,methodssuchasprototypicalNetworks[

Snelletal.,

2017

],MAML[

Finnetal.,

2017a

],ML-PIP[

Gordon

etal.

,

2018

]etc.canbereformulatedunderamodel-basedframeworkthatusesanencoder-decodersetup.Inthissetup,theencoderproducesataskrepresentationusingtrainingdata,andthedecoderthenmakespredictionsbasedonthetaskrep-resentation.Theseapproachestransformthemeta-learningchallengetoresemblearegularlearningprobleminvolvingsequences,anditisalsomorecomputationallyefficientifnogradientcomputationisinvolvedinboththeencoderandthedecoderlikecnp-typemodels[

Garneloetal.,

2018a]

.OurstudyinChapter

3

explicitlyadoptsthisencoder-decoderframeworkformeta-learning.Byusingafunctionaltaskrepresentation,anditerativelyupdatingtherepresentationdirectlyinfunctionspace,

3

wedemonstratethatencoder-decoderapproacheswithoutgradientinformationcanalsobecompetitivewithotherapproaches,whichhasnotbeenshownbefore.

Furthermore,becausetrainingdataforeachtaskinmeta-learningisoftenlimited,uncertaintyestimationbecomescrucial.StochasticProcesses(sps)(e.g.GaussianProcesses(gps))canbeusedtomakepredictionswithuncertaintyestimation.Thus,learningtheseprocessescanbeseenasawaytoapproachmeta-learningwithuncer-taintyinmind.InChapter

4

,weproposeanewframeworktoconstructexpressiveneuralparameterisedspsbyparameterisingMarkovtransitionsinfunctionspace.

Unlikemeta-learningabove,whichdiscoverssharedknowledgefromrelatedtasks,symmetryservesasadirectformofpriororinductivebias,integratedintodeeplearningmodelswithouttheneedforpre-training.Symmetriesrefertotransformationsthatmaintaincertainpropertiesofanobjectofinterestunchanged.Theseincludetransformationssuchasimagetranslation,rotation,orpermutationofsetelements.Byincorporatingthesesymmetriesintodeeplearningmodels,ensuringthattheoutputsremainconsistent(thesameorundergothecorrespondingtransformation)despiteinputtransformations,themodelinherentlygeneralizestotransformedinputs.Consequently,deeplearningmodelsequippedwiththesesymmetriesnotonlybecomemoredata-efficientbutalsogeneralizebetter.AsimpleexampleofthisisConvolutinalNeuralNetworks(cnns),whichareinvarianttoinputtranslationsforclassificationtasks,andperformsignificantlybettercomparedtoplainfeed-forwardnetworks.Earlierresearchhasintroducedmanymethodstobuildconvolutional[

Cohenand

Welling,

2016,

2017,

Cohenetal.,

2019]andattentionblocks[Hutchinsonetal.,

2021,

Fuchsetal.,

2020

]thatareequivariantw.r.t.tovarioussymmetries.However,thepoolinglayersorsubsampling/upsamplinglayerscommonlyusedinvariousdeeplearningarchitecturesbreakthesesymmetries[

Zhang,

2019]

.InChapter

5,wepresent

groupequivariantsubsampling/upsamplinglayersthathaveexactequivariance.

1.2Thesisoutline

InChapter

2

,weprovideashortintroductiontometa-learning,neuralprocessesandsymmetriesindeeplearning,tosetthestageforlaterchapters.

InChapter

3

,weintroduceaniterativefunctionalencoder-decodermethodforsu-pervisedmeta-learning,whichisbasedonNeuralProcesses(nps)[

Garneloetal.,

4

2018a

,b]

.Onstandardfew-shotclassificationbenchmarkslikeminiImageNetandtieredImageNet,itisdemonstratedthatmeta-learningmethodsbasedontheneuralprocessfamilycanbecompetitiveorevenoutperformgradient-basedmethodssuchasMAML[

Finnetal.,

2017a

]andLEO[

Rusuetal.,

2019]

.

InChapter

4

,weintroduceMarkovNeuralProcesses(MNPs),anewclassofStochasticProcesses(SPs)whichareconstructedbystackingsequencesofneuralparameterisedMarkovtransitionoperatorsinfunctionspace.Therefore,theproposediterativeconstructionaddssubstantialflexibilityandexpressivitytotheoriginalframeworkofNeuralProcesses(NPs)withoutcompromisingconsistencyoraddingrestrictions.OurexperimentsdemonstrateclearadvantagesofMNPsoverbaselinemodelsonavarietyoftasks.It’snoteworthythatspmodelscanbeviewedthroughameta-learninglens.Sotheproposedmethodcanalsobeseenasameta-learningapproachwithprincipleduncertaintyestimation.

Chapter

5

,wefirstintroducetranslationequivariantsubsampling/upsamplinglayersthatcanbeusedtoconstructexacttranslationequivariantCNNs.Wethengeneralisetheselayersbeyondtranslationstogeneralgroups,thusproposinggroupequivariantsubsampling/upsampling.Weusetheselayerstoconstructgroupequivariantautoen-coders(GAEs)thatallowustolearnlow-dimensionalequivariantrepresentations.Weempiricallyverifyonimagesthattherepresentationsareindeedequivarianttoinputtranslationsandrotations,andthusgeneralisewelltounseenpositionsandorienta-tions.WefurtheruseGAEsinmodelsthatlearnobject-centricrepresentationsonmulti-objectdatasets,andshowimproveddataefficiencyanddecompositioncomparedtonon-equivariantbaselines.

InChapter

6

,wesummarizeourfindingsandexplorepotentialavenuesforfutureresearchtofurtheradvancethefield.

1.3Papers

Thisisanintegratedthesisandincludesthefollowingpublishedpapers:Chapter3contains:

Xu,J.,Ton,J.F.,Kim,H.,Kosiorek,A.,&Teh,Y.W.Metafun:Meta-

5

learningwithiterativefunctionalupdates.InternationalConferenceon

MachineLearning(ICML),2020[

Xuetal.,

2020]

Chapter4contains:

Xu,J.,Kim,H.,Rainforth,T.,&Teh,Y.(2021).Groupequivariantsub-sampling.AdvancesinNeuralInformationProcessingSystems(NeurIPS),2021[

Xuetal.,

2021]

Chapter5contains

Xu,J.,Dupont,E.,Märtens,K.,Rainforth,T.,&Teh,Y.W.(2023).DeepStochasticProcessesviaFunctionalMarkovTransitionOperators.AdvancesinNeuralInformationProcessingSystems(NeurIPS),2023[

Xu

etal.

,

2023]

6

Chapter2

Background

2.1Meta-learning

2.1.1Conventionalsupervisedlearningandmeta-learning

Inconventionalsupervisedlearning,theobjectiveistolearnafunctionfthatmapsaninputfeaturevectorx∈Xtoanoutputlabely∈Y.Learningisbasedonexampleinput-outputpairsinatrainingsetDtrain={(xi,yi.Commontypesofsupervisedlearningtasksincluderegressionwhereoutputlabelsarereal-valued,andclassificationwheretheoutputlabelsrepresentdifferentclasses.Thefunctionf,oftenreferredto

asthepredictivemodel,isamemberofahypothesisclass,H:={f|f(x;ϕ),ϕ∈Rdφ}.

Foreachtask,thereisariskfunctionℓ(y,f(x))whichmeasurespredictionerror.Asanexample,inthecontextofaregressiontask,ℓoftentakestheformofasquarederror,ℓ(y,f(x))=(y−f(x))2.Thetrainingprocessofthemodelftranslatestosolvinganoptimizationproblemdefinedasfollows:

ItiscalledempiricalriskminimizationbecausethisobjectiveisanestimationofthepopulationriskE(xi,yi)~p(x,y)[ℓ(yi,f(xi))]basedontheempiricaldistributionoftrainingdata.

7

Aftertraining,themodelshouldgeneralizeeffectivelywhenpresentedwithatestset,denotedasDtest={(xi,yim+1.Themodel’sperformancecanbeassessedusing

thetestrisk(f;Dtest)whichservesasanestimateoftheoverallpopulationrisk

usingunseendata.

Figure2.1:Dataforameta-classificationproblem.Boththemeta-trainingandmeta-testsetsconsistoftasks(redrectangles)andarepresumedtocomefromthesametaskdistributionp(T).Eachofthesetasksencompassesitsowntask-specifictrainingandtestsets,whicharecommonlyreferredtoasthecontext(yellowlabels)andthetarget(greylabels)respectively.

Inpractice,itiscommontohavescenarioswherelotsofsupervisedlearningtasksarerelatedtoeachother,yetthenumberofdatapointsforeachindividualtaskislimited.Meta-learningemergesasanewlearningparadigmtoaddresssuchchallenges.

Specifically,wehaveameta-trainingsetdefinedasMtrain={(Dt(a)in,Dt(s)t,ℓ(j)

andameta-testsetgivenbyMtest={(Dt(a)in,Dt(s)t,ℓ(j)M+1.Eachelementinthese

meta-datasetsisatupleconsistingofatrainingset(calledthecontext),atestset(calledthetarget)andariskfunction(typicallythesamewithinameta-dataset).This3-tuplecharacterizesataskTj(seeFigure

2.1

illustration).Insupervisedlearning,weusetrainingdatatotrainapredictivemodel,hopingitcangeneralizeacrosstheentiredatadistribution.Inmeta-learning,theassumptionisthatthereisacommontaskdistribution,denotedasp(T),fromwhichboththemeta-trainingsetandthemeta-testsetaredrawn.Meta-learningalgorithmsaimtousemeta-trainingdatatodiscoverlearningalgorithmsthatcangeneralizeacrosstheentiretaskdistribution.

Morespecifically,alearningalgorithmforasupervisedlearningtasktakesinatraining

8

setDtrain,ariskfunctionℓandoutputsapredictivemodel,writtenas:

=ΦALGO(Dtrain,ℓ).(2.2)

Sinceℓisusuallyfixed,wewillomitthedependencyonitinsubsequentdiscussions.Foraparticulartask,thelearningalgorithmΦALGOcanbeevaluatedbythetestriskofthelearnedpredictivemodel,denotedas:

(;Dtest).(2.3)

Meta-learningfindsalearningalgorithmbasedontasksfromthemeta-trainingsetMtrain,sothatthislearningalgorithmcanbemoreefficientlyappliedtonewtasks,andgeneralizesacrossthetaskdistributionp(T).Themeta-learningalgorithmcanberepresentedas:

ΦALGO=MetaAlgo(Mtrain).(2.4)

Toevaluatethemeta-learningalgorithm,wecancompute:

Whileitresemblesthetestlossinsupervisedlearning,theaggregatedtestriskforataskreplacesthetraditionalriskfunctionforadatapoint.

Itisworthnotingthatwhilewefocusonsupervisedlearningtaskshere,meta-learningcanbeextendedtounsupervisedlearning[

EdwardsandStorkey,

2016,

Reedetal.,

2018

,

Hsuetal.,

2018]orreinforcementlearning[

Wangetal.,

2016,

Finnetal.,

2017a

,b]

.

2.1.2Differentviewsofmeta-learning

Bi-leveloptimizationviewLetusassumeboththepredictivemodelfandthelearningalgorithmΦALGOcanbeparameterised,andtheparametersaredenotedasϕandθaccordingly.Thatistosay,thelearningalgorithmcanbewrittenas:

ϕ=ΦALGO(Dtrain;θ).(2.6)

9

Meta-learningcanbeformulatedasthefollowingbi-leveloptimizationproblem:

wheretask-specificparameterϕjdependsonθthroughtheinner-loopoptimization:

ϕj(θ)=ΦALGO(Dt(a)in;θ)(2.8)

Manymeta-learningalgorithmsaredevelopedbasedonthisbi-leveloptimizationview,suchas

Finnetal.

[2017a],

Nicholetal.

[2018],

RaviandLarochelle

[2016]

.

HierarchicalmodelviewFromaprobabilisticperspective,thegenerativeprocessforeachtaskTjcanbeexpressedas:

θ∼p(θ),ϕj∼p(ϕj|θ),yi(j)∼p(yi(j)|xi(j)ϕj,θ)(2.9)

BoththetrainingsetDt(a)inandthetestsetDt(s)tfollowthesamedistribution(as

illustratedinFigure

2.2

).Thiscanbeseenasaprobabilistichierarchicalmodelwhereθindicatesthehigh-levelglobalparametersforalltasksandϕjdenotesthelow-levellocalparametersforeachtask.Inthiscontext,meta-learningisaboutinferringθfromlotsoftasksinthemeta-trainingset,thatisp(θ|Mtrain).Learning,ontheother

hand,infersϕjgiventhetrainingsetDt(a)infortaskTj,thatisp(ϕj|θ,Dt(a)in).

(j)i

j=1,...

Figure2.2:Meta-learningashierarchicalmodels(AremakeofFigure1in

Gordon

etal.

[2018])

.Task-specificparameterϕjdependsontheglobalparameterθ.Datapointsinboththecontextandthetargethavethesamegenerativeprocess,whichdependonbothθandϕj.

Notethatp(ϕj|θ)canbeseenasapriorfortaskTjconditionedonθ.Therefore,meta-learningcanbeseenaslearninganempiricalpriorfromthemeta-trainingset.

Finnetal.

[2018],

Requeimaetal.

[2019]adoptsthisview

.

10

Model-basedviewAlearningalgorithmf=ΦALGO(Dtrain)canbeseenasafunctionthattakesintheentiretrainingsetandoutputsapredictivemodel.ThemodelisthenusedtomakepredictionsontestdatainDtest.Thelearningandpredictionprocessescanthusbeconceptualizedassequence-to-sequencemappings.Forthesakeofbrevity,let’suseaconcisenotationfordatasequences,suchasx1:n={x1,x2,...,xn}.ForaspecifictaskTj,makingpredictionsfortestsetdatapointsbasedonthosefromthetrainingsetcanbedescribedasthefollowinginferencetask

p(ym+1:n|xm+1:n,x1:m,y1:m).(2.10)

Fromthisperspective,meta-learningisaboutcreatingthisconditionalmodel.Meta-learningonlydiffersfromconventionalsupervisedlearninginthatboththeinp

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论