版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省砚山县二中2025届高二上数学期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线(,)的一条渐近线经过点,则双曲线的离心率为()A. B.C. D.22.抛物线型太阳灶是利用太阳能辐射的一种装置.当旋转抛物面的主光轴指向太阳的时候,平行的太阳光线入射到旋转抛物面表面,经过反光材料的反射,这些反射光线都从它的焦点处通过,形成太阳光线的高密集区,抛物面的焦点在它的主光轴上.如图所示的太阳灶中,灶深CD即焦点到灶底(抛物线的顶点)的距离为1m,则灶口直径AB为()A.2m B.3mC.4m D.5m3.在四面体OABC中,点M在线段OA上,且,N为BC中点,已知,,,则等于()A. B.C. D.4.如图所示,已知是椭圆的左、右焦点,为椭圆的上顶点,在轴上,,且是的中点,为坐标原点,若点到直线的距离为3,则椭圆的方程为()A B.C. D.5.在条件下,目标函数的最大值为2,则的最小值是()A.20 B.40C.60 D.806.在平面区域内随机投入一点P,则点P的坐标满足不等式的概率是()A. B.C. D.7.在长方体中,若,,则异而直线与所成角的余弦值为()A. B.C. D.8.某研究所为了研究近几年中国留学生回国人数的情况,对2014至2018年留学生回国人数进行了统计,数据如下表:年份20142015201620172018年份代码12345留学生回国人数/万36.540.943.348.151.9根据上述统计数据求得留学生回国人数(单位:万)与年份代码满足的线性回归方程为,利用回归方程预测年留学生回国人数为()A.63.14万 B.64.72万C.66.81万 D.66.94万9.已知方程表示焦点在轴上的椭圆,则实数的取值范围是()A. B.C. D.10.曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是()A.﹣9 B.﹣3C.9 D.1511.魏晋时期数学家刘徽首创割圆术,他在《九章算术》方田章圆田术中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”这是注述中所用的割圆术是一种无限与有限的转化过程,比如在正数中的“”代表无限次重复,设,则可以利用方程求得,类似地可得到正数()A.2 B.3C. D.12.实数且,,则连接,两点的直线与圆C:的位置关系是()A.相离 B.相切C.相交 D.不能确定二、填空题:本题共4小题,每小题5分,共20分。13.设与是定义在同一区间上的两个函数,若函数在上有两个不同的零点,则称与在上是“关联函数”.若与在上是“关联函数”,则实数的取值范围是____________.14.不等式的解集是________.15.已知命题:平面上一矩形ABCD的对角线AC与边AB和AD所成角分别为,则,若把它推广到空间长方体中,体对角线与平面,平面,平面所成的角分别为,则可以类比得到的结论为___________________.16.椭圆上一点到两个焦点的距离之和等于,则的标准方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当时,求函数的单调区间;(2)设,,求证:;(3)当时,恒成立,求的取值范围18.(12分)已知函数(e为自然对数的底数),(),.(1)若直线与函数,的图象都相切,求a的值;(2)若方程有两个不同的实数解,求a的取值范围.19.(12分)在中,角A,B,C所对的边分别为a,b,c,且.(1)求角A的大小;(2)若,且的面积为,求的周长.20.(12分)已知:方程表示焦点在轴上的椭圆,:方程表示焦点在轴上的双曲线,其中.(1)若“”为真命题,求的取值范围:(2)若“”为假命题,“”为真命题,求的取值范围.21.(12分)如图1,在中,,,,分别是,边上的中点,将沿折起到的位置,使,如图2(1)求点到平面的距离;(2)在线段上是否存在一点,使得平面与平面夹角的余弦值为.若存在,求出长;若不存在,请说明理由22.(10分)已知平面直角坐标系上一动点满足:到点的距离是到点的距离的2倍.(1)求点的轨迹方程;(2)若点与点关于直线对称,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先求出渐近线方程,进而将点代入直线方程得到a,b关系,进而求出离心率.【详解】由题意,双曲线的渐近线方程为:,而一条渐近线过点,则,.故选:A.2、C【解析】建立如图所示的平面直角坐标系,设抛物线的方程为,根据是抛物线的焦点,求得抛物线的方程,进而求得的长.【详解】由题意,建立如图所示的平面直角坐标系,O与C重合,设抛物线的方程为,由题意可得是抛物线的焦点,即,可得,所以抛物线的方程为,当时,,所以.故选:C.3、B【解析】根据空间向量基本定理结合已知条件求解【详解】因为N为BC中点,所以,因为M在线段OA上,且,所以,所以,故选:B4、D【解析】由题设可得,直线的方程为,点线距离公式表示到直线的距离,又联立解得即可得出答案.【详解】且,则△是等边三角形,设,则①,∴直线方程为,即,∴到直线的距离为②,又③,联立①②③,解得,,故椭圆方程为.故选:D.5、C【解析】首先画出可行域,找到最优解,得到关系式作为条件,再去求的最小值.【详解】画出的可行域,如下图:由得由得;由得;目标函数取最大值时必过N点,则则(当且仅当时等号成立)故选:C6、A【解析】根据题意作出图形,进而根据几何概型求概率的方法求得答案.【详解】根据题意作出示意图,如图所示:于,所求概率.故选:A.7、C【解析】通过平移把异面直线平移到同一平面中,所以取,的中点,易知且过中心点,所以异而直线与所成角为和所成角,通过解三角形即可得解.【详解】根据长方体的对称性可得体对角线过中心点,取,的中点,易知且过中心点,所以异而直线和所成角为和所成角,连接,在中,,,,所以则异而直线与所成角的余弦值为:,故选:C.8、D【解析】先求出样本点的中心,代入线性回归方程即可求出,再将代入线性回归方程即可得到结果【详解】由题意知:,,所以样本点的中心为,所以,解得:,可得线性回归方程为,年对应的年份代码为,令,则,所以预测2022年留学生回国人数为66.94万,故选:D.9、D【解析】根据已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】因为方程表示焦点在轴上的椭圆,则,解得.故选:D.10、C【解析】y′=3x2,则y′|x=1=3,所以曲线在P点处的切线方程为y-12=3(x-1)即y=3x+9,它在y轴上的截距为9.11、A【解析】设,则,解方程可得结果.【详解】设,则且,所以,所以,所以,所以或(舍).所以.故选:A【点睛】关键点点睛:设是解题关键.12、B【解析】由题意知,m,n是方程的根,再根据两点式求出直线方程,利用圆心到直线的距离与半径之间的关系即可求解.【详解】由题意知,m,n是方程的根,,,过,两点的直线方程为:,圆心到直线的距离为:,故直线和圆相切,故选:B【点睛】本题考查了直线与圆的位置关系,考查了计算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】令得,设函数,则直线与函数在区间上的图象有两个交点,利用导数分析函数的单调性与极值,利用数形结合思想可求得实数的取值范围.【详解】令得,设函数,则直线与函数在区间上的图象有两个交点,,令,可得,列表如下:极小值,,如图所示:由图可知,当时,直线与函数在区间上的图象有两个交点,因此,实数的取值范围是.故答案为:.14、【解析】把原不等式的右边移项到左边,通分计算后,根据分式不等式解法,然后转化为两个一元一次不等式组,注意分母不为0的要求,求出不等式组的解集即为原不等式的解集【详解】不等式得,故,故答案为:.15、【解析】先由线面角的定义得到,再计算的值即可得到结论【详解】在长方体中,连接,在长方体中,平面,所以对角线与平面所成的角为,对角线与平面所成的角为,对角线与平面所成的角为,显然,,,所以,,故答案为:16、【解析】根据椭圆定义求出其长半轴长,再结合焦点坐标即可计算作答.【详解】因椭圆上一点到两个焦点的距离之和等于,则该椭圆长半轴长,而半焦距,于是得短半轴长b,有,所以的标准方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)函数单调递增区间为(0,1),单调递减区间为(1,+∞)(2)证明见解析(3)[1,+∞)【解析】(1)对函数求导后,由导数的正负可求出函数的单调区间,(2)由(1)可得,令,则可得,然后利用累加法可证得结论,(3)由,故,然后分和讨论的最大值与比较可得结果【小问1详解】当时,(),则,由,解得;由,解得,因此函数单调递增区间为(0,1),单调递减区间为(1,+∞)【小问2详解】由(1)知,当k=1时,,故令,则,即,所以【小问3详解】由,故当时,因为,所以,因此恒成立,且的根至多一个,故在(0,1]上单调递增,所以恒成立当时,令,解得当时,,则单调递增;当时,,则单调递减;于是,与恒成立相矛盾综上,的取值范围为[1,+∞)【点睛】关键点点睛:此题考查导数的综合应用,考查利用导数求函数的单调区,利用导数求函数的最值,利用导数证明不等式,第(2)问解题的关键是利用(1)可得,从而得,然后令,得,最后累加可证得结论,考查数转化思想,属于较难题18、(1);(2).【解析】(1)根据导数的几何意义进行求解即可;(2)利用常变量分离法,通过构造新函数,由方程有两个不同的实数解问题,转化为两个函数的图象有两个交点问题,利用导数进行求解即可.【小问1详解】设曲线的切点坐标为,由,所以过该切点的切线的斜率为,因此该切线方程为:,因为直线与函数的图象相切,所以,因为直线与函数的图象相切,且函数过原点,所以曲线的切点为,于是有,即;【小问2详解】由可得:,当时,显然不成立,当时,由,设函数,,,当时,,单调递减,当时,,单调递减,当时,,单调递增,因此当时,函数有最小值,最小值为,而,当时,,函数图象如下图所示:方程有两个不同的实数解,转化为函数和函数的图象,在当时,有两个不同的交点,由图象可知:,故a的取值范围为.【点睛】关键点睛:利用常变量分离法,结合转化法进行求解是解题的关键.19、(1)(2)【解析】(1)由,根据正弦定理化简得,利用余弦定理求得,即可求解;(2)由的面积,求得,结合余弦定理,求得,即可求解.【小问1详解】解:因为,所以.由正弦定理得,可得,所以,因为,所以.【小问2详解】解:由的面积,所以.由余弦定理得,所以,所以,所以的周长为.20、(1)或(2)【解析】(1)先假设命题为真命题,求出的取值范围,为真命题,取补集即可(2)假设命题为真命题,求出的取值范围,根据题意,则命题假设和命题一真一假,分类讨论求的取值范围【小问1详解】解:若为真命题,则,解得,若“”为真命题,则为假命题,或;【小问2详解】若为真命题,则解得,若“”为假命题,则“”为真命题,则与一真一假,①若真假,则解得,②若真假,则解得,综上所述,,即的取值范围为.21、(1)(2)存在,【解析】(1)根据题意分别由已知条件计算出的面积和的面积,利用求解,(2)如图建立空间直角坐标系,设,然后求出平面与平面的法向量,利用向量平夹角公式列方程可求得结果小问1详解】在中,,因为,分别是,边上的中点,所以∥,,所以,所以,因为,所以平面,所以平面,因为平面,所以,所以,因为平面,平面,所以平面平面,因为,所以,因为,所以是等边三角形,取的中点,连接,则,,因为平面平面,平面平面,平面,所以平面,中,,所以边上的高为,所以,在梯形中,,设点到平面的距离为,因,所以,所以,得,所以点到平面的距离为【小问2详解】由(1)可知平面,,所以以为原点,建立如图所示的空间直角坐标系,则,设,则,设平面的法向量为,则,令,则,设平面的法向量为,则,令,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年商场营业员个人工作总结例文(五篇)
- 2024年大学辅导员个人工作计划(二篇)
- 2024年商业门面房出租合同标准范文(二篇)
- 2024年学生会纪律部工作计划例文(二篇)
- 【《浅谈小学生读写能力的培养》7300字(论文)】
- 【《房地产上市公司盈利能力探究(论文)》15000字】
- 2024年单位物业工程部八月份工作计划范例(二篇)
- 2024年固定劳动合同参考范文(五篇)
- 2024年后勤工作计划书(二篇)
- 2024年小学二年级班主任工作总结(三篇)
- 《第9课中西古典园林》教学设计(部级优课)-美术教案
- 建设工程消防验收技术服务项目方案(技术标 )
- MOOC创新创业与管理基础(东南大学)
- 莱州市梁郭镇大郎家金矿矿山地质环境保护与土地复垦方案
- 人工成本对建筑工程造价影响因素分析
- XX医院高警示药品(高危药品)目录
- 拆除桥梁专项施工方案范本
- 新雳切割喷墨绘图机说明书
- 抗美援朝精神(教案)小学生主题班会通用版
- 集团公司五年战略发展规划
- 防造假管理程序文件
评论
0/150
提交评论