新疆乌鲁木齐市70中2025届高二上数学期末预测试题含解析_第1页
新疆乌鲁木齐市70中2025届高二上数学期末预测试题含解析_第2页
新疆乌鲁木齐市70中2025届高二上数学期末预测试题含解析_第3页
新疆乌鲁木齐市70中2025届高二上数学期末预测试题含解析_第4页
新疆乌鲁木齐市70中2025届高二上数学期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆乌鲁木齐市70中2025届高二上数学期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的左、右焦点分别为,点A在双曲线上,且轴,若则双曲线的离心率等于()A. B.C.2 D.32.设函数的导函数是,若,则()A. B.C. D.3.下列函数是偶函数且在上是减函数的是A. B.C. D.4.椭圆中以点为中点的弦所在直线斜率为()A. B.C. D.5.已知f(x)是定义在R上的偶函数,当时,,且f(-1)=0,则不等式的解集是()A. B.C. D.6.已知向量,若,则()A. B.5C.4 D.7.命题“”的一个充要条件是()A. B.C. D.8.甲、乙两名同学同时从教室出发去体育馆打球(路程相等),甲一半时间步行,一半时间跑步;乙一半路程步行,一半路程跑步.如果两人步行速度、跑步速度均相等,则()A.甲先到体育馆 B.乙先到体育馆C.两人同时到体育馆 D.不确定谁先到体育馆9.设双曲线的左、右顶点分别为、,点在双曲线上第一象限内的点,若的三个内角分别为、、且,则双曲线的渐近线方程为()A. B.C. D.10.设是公比为的等比数列,则“”是“为递增数列”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件11.函数在上的极大值点为()A. B.C. D.12.设点P是函数图象上任意一点,点Q的坐标,当取得最小值时圆C:上恰有2个点到直线的距离为1,则实数r的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知定义在R上的函数的导函数,且,则实数的取值范围为__________.14.已知,在直线上存在点P,使,则m的最大值是_______.15.已知为数列{}前n项和,若,且),则=___16.若在数列的每相邻两项之间插入此两项的和,可形成新的数列,再把所得数列按照同样的方法不断进行构造,又可以得到新的数列.现将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;依次构造,第次得到数列1,,,,…,,2;记则______,设数列的前n项和为,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和(1)求数列的通项公式;(2)求数列的前项和18.(12分)已知等差数列中,,,等比数列中,,(1)求数列的通项公式;(2)记,求的最小值19.(12分)已知函数(1)求函数在点处的切线方程;(2)求函数的单调区间及极值20.(12分)在下列所给的三个条件中任选一个,补充在下面的问题中,并加以解答①过(-1,2);②与直线平行;③与直线垂直问题:已知直线过点M(3,5),且______(1)求的方程;(2)若与圆相交于点A、B,求弦AB的长21.(12分)已知函数(1)若在上不单调,求a的范围;(2)试讨论函数的零点个数22.(10分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率)(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由双曲线定义结合通径公式、化简得出,最后得出离心率.【详解】,,,解得故选:B2、A【解析】求导后,令,可求得,再令可求得结果.【详解】因为,所以,所以,所以,所以,所以.故选:A【点睛】本题考查了导数的计算,考查了求导函数值,属于基础题.3、C【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案【详解】根据题意,依次分析选项:对于A,为一次函数,不是偶函数,不符合题意;对于B,,,为奇函数,不是偶函数,不符合题意;对于C,,为二次函数,是偶函数且在上是减函数,符合题意;对于D,,,为奇函数,不是偶函数,不符合题意;故选C【点睛】本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性,属于基础题4、A【解析】先设出弦的两端点的坐标,分别代入椭圆方程,两式相减后整理即可求得弦所在的直线的斜率【详解】设弦的两端点为,,代入椭圆得两式相减得,即,即,即,即,弦所在的直线的斜率为,故选:A5、D【解析】根据题意可知,当时,,即函数在上单调递增,再结合函数f(x)的奇偶性得到函数的奇偶性,并根据奇偶性得到单调性,进而解得答案.【详解】由题意,当时,,则函数在上单调递增,而f(x)是定义在R上的偶函数,容易判断是定义在上的奇函数,于是在上单调递增,而f(-1)=0,则.于是当时,.故选:D.6、B【解析】根据向量垂直列方程,化简求得.【详解】由于,所以.故选:B7、D【解析】结合不等式的基本性质,利用充分条件和必要条件的定义判断.【详解】A.当时,满足,推不出,故不充分;B.当时,满足,推不出,故不充分;C.当时,推不出,故不必要;D.因为,故充要,故选:D8、A【解析】设出总路程与步行速度、跑步速度,表示出两人所花时间后比较不等式大小【详解】设总路程为,步行速度,跑步速度对于甲:,得对于乙:,当且仅当时等号成立,而,故,乙花时间多,甲先到体育馆故选:A9、B【解析】设点,其中,,求得,且有,,利用两角和的正切公式可求得的值,进而可求得的值,即可得出该双曲线的渐近线的方程.【详解】易知点、,设点,其中,,且,,且,,,所以,,,因为,所以,,则,因此,该双曲线渐近线方程为.故选:B.10、D【解析】当时,不是递增数列;当且时,是递增数列,但是不成立,所以选D.考点:等比数列11、C【解析】求出函数的导数,利用导数确定函数的单调性,即可求出函数的极大值点【详解】,∴当时,,单调递减,当时,,单调递增,当时,,单调递减,∴函数在的极大值点为故选:C12、C【解析】先求出代表的是以为圆心,2为半径的圆的位于x轴下方部分(包含x轴上的部分),数形结合得到取得最小值时a的值,得到圆心C,利用点到直线距离求出圆心C到直线的距离,数形结合求出半径r的取值范围.【详解】,两边平方得:,即点P在以为圆心,2为半径的圆的位于x轴下方部分(包含x轴上的部分),如图所示:因为Q的坐标为,则在直线,过点A作⊥l于点,与半圆交于点,此时长为的最小值,则,所以直线:,与联立得:,所以,解得:,则圆C:,则,圆心到直线的距离为,要想圆C上恰有2个点到直线的距离为1,则.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意可得在R上单调递增,再由,利用函数的单调性转化为关于的不等式求解【详解】定义在R上的函数的导函数,在R上单调递增,由,得,即实数的取值范围为故答案为:14、11【解析】设P点坐标,根据条件知,由向量的坐标运算可得P点位于圆上,再根据P存在于直线上,可知直线和圆有交点,因此列出相应的不等式,求得m范围,可得m的最大值.【详解】设P(x,y),则,由题意可知,所以,即,即满足条件的点P在圆上,又根据题意P点存在于直线上,则直线与圆有交点,故有圆心(1,0)到直线的距离小于等于圆的半径,即,解得,则m的最大值为11,故答案为:11.15、2【解析】第一步找出数列周期,第二步利用周期性求和.【详解】,,,,,,可知数列{}是周期为4的周期数列,所以故答案为:2.16、①.81②.【解析】根据数列的构造写出前面几次得到的新数列,寻找规律,构造等比数列,求出通项公式,再进行求和.【详解】第1次得到数列1,3,2,此时;第2次得到数列1,4,3,5,2,此时;第3次得到数列1,5,4,7,3,8,5,7,2,此时;第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时,故81,且故,又,所以数列是以为首项,公比为3的等比数列,所以,故,所以故答案为:81,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用与的关系求数列的通项公式;(2)利用错位相减法求和即可.【小问1详解】因为,故当时,,两式相减得,又由题设可得,从而的通项公式为:;【小问2详解】因为,,两式相减得:所以.18、(1)(2)0【解析】(1)利用等差数列通项公式基本量的计算可求得,进而利用等比数列的基本量的计算即可求得数列的通项公式;(2)由(1)可知,则,观察分析即可解【小问1详解】设等差数列的公差为d,所以由,,得所以,从而,,所以,,q=3,所以【小问2详解】由(1)可知,所以,当n=1时,为正值﹐所以;当n=2时,为负值﹐所以;当时,为正值﹐所以又综上:当n=3时,有最小值019、(1)+1;(2)单调增区间,单调减区间是和,极大值为,极小值为【解析】(1)根据导数的几何意义可求出切线斜率,求出后利用点斜式即可得解;(2)求出函数导数后,解一元二次不等式分别求出、时的取值范围即可得解.【详解】(1)因为,所以,∴切线方程为,即+1;(2),所以当或时,,当时,,所以函数单调增区间是,单调减区间是和,极大值为,极小值为20、(1)(2)【解析】(1)可依次根据直线方程的点斜式、“两直线平行,斜率相等”、“两直线垂直,斜率相乘为-1”求直线l的方程;(2)利用垂径定理即可求圆的弦长.【小问1详解】选条件①:∵直线过点(3,5)及(-1,2),∴直线的斜率为,依题意,直线的方程为,即;选条件②:∵直线的斜率为,直线与直线平行,∴直线的斜率为,依题意,直线的方程为;即;选条件③:∵直线的斜率为,直线与直线垂直,∴直线的斜率为,依题意,直线的方程为,即;【小问2详解】圆心为(2,3),半径为2,圆心到直线的距离为∴21、(1)(2)答案见解析【解析】(1)由:存在使来求得的取值范围.(2)利用分离常数法,结合导数来求得零点个数.【小问1详解】,在上递增,由于在上不单调,所以存使,,所以.【小问2详解】,令,当时,,构造函数,,所以在递减;在递增,当时,;当时,;.由此画出大致图象如下图所示,所以,当时,有个零点,当时,没有零点,当时,有个零点.22、(1)V(r)=(300r﹣4r3)(0,5)(2)见解析【解析】(1)先由圆柱的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论