湖南省长沙市宁乡市第十三高级中学2025届高二上数学期末经典试题含解析_第1页
湖南省长沙市宁乡市第十三高级中学2025届高二上数学期末经典试题含解析_第2页
湖南省长沙市宁乡市第十三高级中学2025届高二上数学期末经典试题含解析_第3页
湖南省长沙市宁乡市第十三高级中学2025届高二上数学期末经典试题含解析_第4页
湖南省长沙市宁乡市第十三高级中学2025届高二上数学期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市宁乡市第十三高级中学2025届高二上数学期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.,则与分别为()A.与 B.与C.与0 D.0与2.是数列,,,-17,中的第几项()A第项 B.第项C.第项 D.第项3.“x>1”是“x>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种 B.120种C.240种 D.480种5.在二项式的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,则有理项互不相邻的概率()A. B.C. D.6.双曲线x21的渐近线方程是()A.y=±x B.y=±xC.y=± D.y=±2x7.是等差数列,且,,则的值()A. B.C. D.8.若等差数列的前项和为,首项,,,则满足成立的最大正整数是()A. B.C. D.9.数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.平面直角坐标系中,曲线:就是一条形状优美的曲线,对于此曲线,给出如下结论:①曲线围成的图形的面积是;②曲线上的任意两点间的距离不超过;③若是曲线上任意一点,则的最小值是其中正确结论的个数为()A. B.C. D.10.已知椭圆和双曲线有共同焦点,是它们一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值为A.3 B.2C. D.11.已知正实数满足,则的最小值为()A. B.9C. D.12.圆与圆的位置关系是()A.相交 B.相离C.内切 D.外切二、填空题:本题共4小题,每小题5分,共20分。13.如图,茎叶图所示数据平均分为91,则数字x应该是__________14.写出一个同时具有性质①②的函数___________.(不是常值函数),①为偶函数;②.15.在正项等比数列{an}中,若,与的等差中项为12,则等于_______.16.已知双曲线,的左、右焦点分别为、,且的焦点到渐近线的距离为1,直线与交于,两点,为弦的中点,若为坐标原点)的斜率为,,则下列结论正确的是____________①;②的离心率为;③若,则的面积为2;④若的面积为,则为钝角三角形三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前n项和为满足(1)求证:是等比数列,并求数列通项公式;(2)若,数列的前项和为.求证:18.(12分)已知关于的不等式(1)若不等式的解集为,求的值(2)若不等式的解集为,求的取值范围19.(12分)某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识,组织方从参加活动的群众中随机抽取120名群众,按年龄将这120名群众分成5组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)求图中m的值;(2)估算这120名群众的年龄的中位数(结果精确到0.1);(3)已知第1组群众中男性有2人,组织方要从第1组中随机抽取2名群众组成维权志愿者服务队,求恰有一名女性的概率.20.(12分)如图,在三棱锥中,侧面为等边三角形,,,平面平面,为的中点.(1)求证:;(2)若,求二面角的大小.21.(12分)已知抛物线过点.(1)求抛物线方程;(2)若直线与抛物线交于两点两点在轴的两侧,且,求证:过定点.22.(10分)已知等差数列满足,(1)求的通项公式;(2)若等比数列的前n项和为,且,,,求满足的n的最大值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用正弦函数和常数导数公式,结合代入法进行求解即可.【详解】因为,所以,所以,,故选:C2、C【解析】利用等差数列的通项公式即可求解【详解】设数列,,,,是首项为,公差d=-4的等差数列{},,令,得故选:C3、A【解析】根据充分、必要条件间的推出关系,判断“x>1”与“x>0”的关系.【详解】“x>1”,则“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要条件.故选:A.4、C【解析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,故选:C.【点睛】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.5、A【解析】先根据前三项的系数成等差数列求,再根据古典概型概率公式求结果【详解】因为前三项的系数为,,,当时,为有理项,从而概率为.故选:A.6、D【解析】根据双曲线渐近线定义即可求解.【详解】双曲线的方程为,双曲线的渐近线方程为,故选:D【点睛】本题主要考查了双曲线的简单几何性质,属于容易题.7、B【解析】根据等差数列的性质计算【详解】因为是等差数列,所以,,也成等差数列,所以故选:B8、B【解析】由等差数列的,及得数列是递减的数列,因此可确定,然后利用等差数列的性质求前项和,确定和的正负【详解】∵,∴和异号,又数列是等差数列,首项,∴是递减的数列,,由,所以,,∴满足的最大自然数为4040故选:B【点睛】关键点睛:本题求满足的最大正整数的值,关键就是求出,时成立的的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.9、C【解析】结合已知条件写出曲线的解析式,进而作出图像,对于①,通过图像可知,所求面积为四个半圆和一个正方形面积之和,结合数据求解即可;对于②,根据图像求出曲线上的任意两点间的距离的最大值即可判断;对于③,将问题转化为点到直线的距离,然后利用圆上一点到直线的距离的最小值为圆心到直线的距离减去半径即可求解.【详解】当且时,曲线的方程可化为:;当且时,曲线的方程可化为:;当且时,曲线的方程可化为:;当且时,曲线的方程可化为:,曲线的图像如下图所示:由上图可知,曲线所围成的面积为四个半圆的面积与边长为的正方形的面积之和,从而曲线所围成的面积,故①正确;由曲线的图像可知,曲线上的任意两点间的距离的最大值为两个半径与正方形的边长之和,即,故②错误;因为到直线的距离为,所以,当最小时,易知在曲线的第一象限内的图像上,因为曲线的第一象限内的图像是圆心为,半径为的半圆,所以圆心到的距离,从而,即,故③正确,故选:C.10、D【解析】设椭圆长半轴长为a1,双曲线的半实轴长a2,焦距2c.根据椭圆及双曲线的定义可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根据余弦定理可得到,利用基本不等式可得结论【详解】如图,设椭圆的长半轴长为a1,双曲线的半实轴长为a2,则根据椭圆及双曲线的定义:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,设|F1F2|=2c,∠F1PF2=,则:在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化简得:a12+3a22=4c2,该式可变成:,∴≥2∴,故选D【点睛】本题考查圆锥曲线的共同特征,考查通过椭圆与双曲线的定义求焦点三角形三边长,考查利用基本不等式求最值问题,属于中档题11、A【解析】根据,将式子化为,进而化简,然后结合基本不等式求得答案.【详解】因为,所以,当且仅当,即时取等号,所以的最小值为.故选:A.12、A【解析】求出两圆的圆心及半径,求出圆心距,从而可得出结论.【详解】解:圆的圆心为,半径为,圆圆心为,半径为,则两圆圆心距,因为,所以两圆相交.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】结合茎叶图以及平均数列出方程,即可求出结果.【详解】由题意可知,解得,故答案为:1.14、(答案不唯一)【解析】利用导函数周期和奇偶性构造导函数,再由导函数构造原函数列举即可.【详解】由知函数的周期为,则,同时满足为偶函数,所以满足条件.故答案为:(答案不唯一).15、128【解析】先根据条件利用等比数列的通项公式列方程组求出首项和公差,进而可得.【详解】设正项等比数列{an}的公比为,由已知,得,①,又,②,由①②得,故答案为:128.16、②④【解析】由已知可得,可求,,从而判断①②,求出△的面积可判断③,设,,利用面积求出点的坐标,再求边长,求出可判断④【详解】解:设,,,,可得,,两式相减可得,由题意可得,且,,,,,,故②正确;的焦点到渐近线的距离为1,设到渐近线的距离为,则,即,,故①错误,,若,不妨设在右支上,,又,,则的面积为,故③不正确;设,,,,将代入双曲线,得,,根据双曲线的对称性,不妨取点的坐标为,,,,,为钝角,为钝角三角形.故④正确故答案为:②④三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,(2)证明见解析【解析】(1)令可求得的值,令,由可得,两式作差可得,利用等比数列的定义可证得结论成立,确定该数列的首项和公比,可求得数列的通项公式;(2)求得,利用错位相减法可求得,结合数列的单调性可证得结论成立.【小问1详解】证明:当时,,解得,当时,由可得,上述两个等式作差得,所以,,则,因为,则,可得,,,以此类推,可知对任意的,,所以,,因此,数列是等比数列,且首项为,公比为,所以,,解得.【小问2详解】证明:,则,其中,所以,数列为单调递减数列,则,,,上式下式,得,所以,,因此,.18、(1);(2)【解析】(1)根据关于的不等式的解集为,得到和1是方程的两个实数根,再利用韦达定理求解.(2)根据关于的不等式的解集为.又因为,利用判别式法求解.【详解】(1)因为关于的不等式的解集为,所以和1是方程的两个实数根,由韦达定理可得,得(2)因为关于的不等式的解集为因为所以,解得,故的取值范围为【点睛】本题主要考查一元二次不等式的解集和恒成立问题,还考查了运算求解的能力,属于中档题.19、(1)(2)(3)【解析】(1)由频率分布直方图中所有频率和为1求出;(2)求出概率对应的值即为中位数;(3)求出第一组中总人数,得女性人数,然后求得恰有一名女性的方法数和总的方法数后可得概率【小问1详解】解:因为频率分布直方图的小矩形面积和为1,所以,解得,【小问2详解】解:前2组频率和为,前3组频率和为,所以中位数在第3组,设中位数为,则,;【小问3详解】解:第一组总人数为,男性人2人,则女性有4人,不妨记两名男性为,四名女性为,则随机抽取2名群众的可能为,,,共15种方案,其中恰有一名女性的方法数,共8种,所以第1组中随机抽取2名群众组成维权志愿者服务队,求恰有一名女性的概率为20、(1)证明见解析(2)【解析】(1)取中点,由面面垂直和线面垂直性质可证得,结合,由线面垂直判定可证得平面,由线面垂直性质可得结论;(2)以为坐标原点可建立空间直角坐标系,由向量数乘运算可求得点坐标,利用二面角的向量求法可求得结果.【小问1详解】取中点,连接,为等边三角形,为中点,,平面平面,平面平面,平面,平面,又平面,;分别为中点,,又,,平面,,平面,又平面,.【小问2详解】以为坐标原点,为轴可建立如图所示空间直角坐标系,则,,,,,设,则,,由得:,解得:,即,,设平面的法向量,则,令,解得:,,;又平面的一个法向量,;由图象知:二面角为锐二面角,二面角的大小为.21、(1);(2)证明见解析.【解析】(1)运用代入法直接求解即可;(2)设出直线的方程与抛物线方程联立,结合一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论