版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西藏自治区日喀则市南木林高级中学2025届高二上数学期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某几何体的三视图如图所示,则其对应的几何体是A. B.C. D.2.已知数列,,则下列说法正确的是()A.此数列没有最大项 B.此数列的最大项是C.此数列没有最小项 D.此数列的最小项是3.已知是双曲线的左焦点,,是双曲线右支上的动点,则的最小值为()A.9 B.8C.7 D.64.已知E、F分别为椭圆的左、右焦点,倾斜角为的直线l过点E,且与椭圆交于A,B两点,则的周长为A.10 B.12C.16 D.205.空气质量指数大小分为五级指数越大说明污染的情况越严重,对人体危害越大,指数范围在:,,,,分别对应“优”、“良”、“轻中度污染”、“中度重污染”、“重污染”五个等级,如图是某市连续14天的空气质量指数趋势图,下面说法错误的是().A.这14天中有4天空气质量指数为“良”B.从2日到5日空气质量越来越差C.这14天中空气质量的中位数是103D.连续三天中空气质量指数方差最小是9日到11日6.圆的圆心为()A. B.C. D.7.已知集合A={x|-2≤x≤0},B={-2,-1,0,1},则A∩B=()A.{-2,-1,0,1} B.{-1,0,1}C.{-2,-1} D.{-2,-1,0}8.已知等差数列的前项和为,且,,则()A.3 B.5C.6 D.109.倾斜角为45°,在y轴上的截距为-1的直线方程是()A.x-y+1=0 B.x-y-1=0C.x+y-1=0 D.x+y+1=010.关于x的方程在内有解,则实数m的取值范围()A. B.C. D.11.函数的定义域为开区间,导函数在内的图像如图所示,则函数在开区间内的极大值点有()A.1个 B.2个C.3个 D.4个12.已知数列为等比数列,,则的值为()A. B.C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.瑞士著名数学家欧拉在1765年证明了定理:三角形的外心、重心、垂心位于同一条直线上,这条直线被后人称为三角形的“欧拉线”.已知平面直角坐标系中各顶点的坐标分别为,,,则其“欧拉线”的方程为___________.14.已知数列的前项和为,且满足,若对于任意的,不等式恒成立,则实数的取值范围为____________.15.总体由编号为01,02,…,30的30个个体组成.选取方法是从下面随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为____________.66065747173407275017362523611665118918331119921970058102057864532345647616.复数的实部为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设p:关于x的不等式有解,q:.(1)若p为真命题,求实数m的取值范围;(2)若为假命题,为真命题,求实数m的取值范围.18.(12分)已知点A(,0),点C为圆B:(B为圆心)上一动点,线段AC的垂直平分线与直线BC交于点G(1)设点G的轨迹为曲线T,求曲线T的方程;(2)若过点P(m,0)()作圆O:的一条切线l交(1)中的曲线T于M、N两点,求△MNO面积的最大值19.(12分)已知圆经过,且圆心C在直线上(1)求圆的标准方程;(2)若直线:与圆存在公共点,求实数的取值范围20.(12分)如图,直角梯形AEFB与菱形ABCD所在平面互相垂直,,,,,,M为AD中点.(1)证明:直线面DEF;(2)求二面角的余弦值.21.(12分)在等差数列中,已知公差,前项和(其中)(1)求;(2)求和:22.(10分)已知椭圆的左,右焦点分别为,三个顶点(左、右顶点和上顶点)构成的三角形的面积为,离心率为方程的根.(1)求椭圆方程;(2)椭圆的一个内接平行四边形的一组对边分别过点和,如图,若这个平行四边形面积为,求平行四边形的四个顶点的纵坐标的乘积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据三视图即可还原几何体.【详解】根据三视图,特别注意到三视图中对角线的位置关系,容易判断A正确.【点睛】本题主要考查了三视图,属于中档题.2、B【解析】令,则,,然后利用函数的知识可得答案.【详解】令,则,当时,当时,,由双勾函数的知识可得在上单调递增,在上单调递减所以当即时,取得最大值,所以此数列的最大项是,最小项为故选:B3、A【解析】由双曲线方程求出,再根据点在双曲线的两支之间,结合可求得答案【详解】由,得,则,所以左焦点为,右焦点,则由双曲线的定义得,因为点在双曲线的两支之间,所以,所以,当且仅当三点共线时取等号,所以的最小值为9,故选:A4、D【解析】利用椭圆的定义即可得到结果【详解】椭圆,可得,三角形的周长,,所以:周长,由椭圆的第一定义,,所以,周长故选D【点睛】本题考查椭圆简单性质的应用,椭圆的定义的应用,三角形的周长的求法,属于基本知识的考查5、C【解析】根据题图分析数据,对选项逐一判断【详解】对于A,14天中有1,3,12,13共4日空气质量指数为“良”,故A正确对于B,从2日到5日空气质量指数越来越高,故空气质量越来越差,故B正确对于C,14个数据中位数为:,故C错误对于D,观察折线图可知D正确故选:C6、D【解析】由圆的标准方程求解.【详解】圆的圆心为,故选:D7、D【解析】根据集合交集的运算法则计算即可.【详解】∵A={x|-2≤x≤0},B={-2,-1,0,1},则A∩B={-2,-1,0}.故选:D.8、B【解析】根据等差数列的性质,以及等差数列的前项和公式,由题中条件,即可得出结果.【详解】因为数列为等差数列,由,可得,,则.故选:B.【点睛】本题主要考查等差数列的性质,以及等差数列前项和的基本量运算,属于基础题型.9、B【解析】由题意,,所以,即,故选B10、A【解析】当时,显然不成立,当时,分离变量,利用导数求得函数的单调性与最值,即可求解.【详解】当时,可得显然不成立;当时,由于方程可转化为,令,可得,当时,,函数单调递增;当时,,函数单调递减,所以当时,函数取唯一的极大值,也是最大值,所以,所以,即,所以实数m的取值范围.故选:A.11、B【解析】利用极值点的定义求解.【详解】由导函数的图象知:函数在内,与x轴有四个交点:第一个点处导数左正右负,第二个点处导数左负右正,第三个点处导数左正右正,第四个点处导数左正右负,所以函数在开区间内的极大值点有2个,故选:B12、B【解析】根据等比数列的性质计算.【详解】由等比数列的性质可知,且等比数列奇数项的符号相同,所以,即.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意知是直角三角形,即可写出垂心、外心的坐标,进而可得“欧拉线”的方程.【详解】由题设知:是直角三角形,则垂心为直角顶点,外心为斜边的中点,∴“欧拉线”的方程为.故答案为:.14、【解析】先求出,然后当时,由,得,两式相减可求出,再验证,从而可得数列为等比数列,进而可求出,再将问题转化为在上恒成立,所以,从而可求出实数的取值范围【详解】当时,,得,当时,由,得,两式相减得,得,满足此式,所以,因为,所以数列是以为公比,为首项的等比数列,所以,所以对于任意的,不等式恒成立,可转化为对于任意的,恒成立,即在上恒成立,所以,解得或,所以实数的取值范围为故答案为:【点睛】关键点点睛:此题考查数列通项公的求法,等比数列求和公式的应用,考查不等式恒成立问题,解题的关键是求出数列的通项公式后求得,再将问题转化为在上恒成立求解即可,考查数学转化思想,属于较难题15、23【解析】根据随机表,由编号规则及读表位置列举出前5个符合要求的编号,即可得答案.【详解】由题设,依次得到的数字为57,47,17,34,07,27,50,17,36,25,23,……根据编号规则符合要求的依次为17,07,27,25,23,……所以第5个个体编号为23.故答案为:23.16、【解析】复数,其实部为.考点:复数的乘法运算、实部.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】根据题意,解出p和q里面m的范围即可求解﹒其中有解,则≥0﹒【小问1详解】p为真命题时,,解得,所以m的取值范围是;【小问2详解】q为真命题时,即,解得,所以q为假命题时,或,由(1)知,p为假时,因为为假命题,为真命题,所以p,q为一真一假,当p真q假时,且“或”,解得;当p假q真时,,解得;综上:m的取值范围是18、(1)(2)1【解析】(1)可由题意,点G在线段AC的垂直平分线上,,可利用椭圆的定义,得到点G的轨迹为椭圆,然后利用已知的长度关系求解出椭圆方程;(2)可通过设l的方程,利用l是圆O的切线,通过点到直线的距离得到一组等量关系,然后将直线与椭圆联立方程,计算弦长,表示出△MNO面积的表达式,将上面得到的等量关系代入利用基本不等式即可求解出最值.【小问1详解】依题意有,,即G点轨迹是以A,B为焦点的椭圆,设椭圆方程为由题意可知,,则,,所以曲线T的方程为【小问2详解】设,,设直线l的方程为,因为直线l与圆相切,所以,即,联立直线l与椭圆的方程,整理得,,由韦达定理可得,,所以,又点O到直线l的距离为1,所以当且仅当,即时,取等号,所以的面积的最大值为119、(1)(2)【解析】(1)因为圆心在直线上,可设圆心坐标为,利用圆心到圆上两点的距离相等列出等式求解即可.(2)直线与圆存在公共点,即圆心到直线的距离小于等于半径,列出不等关系求解即可.【小问1详解】解:因为圆心在直线上,所以设圆心坐标为,因为圆经过,,所以,即:,解方程得,圆心坐标为,半径为,圆的标准方程为:【小问2详解】圆心到直线的距离且直线与圆有公共点即20、(1)证明见解析(2)【解析】(1)由平面平面ABCD,可得平面ABCD,连接BD,可得,以为原点,为轴,竖直向上为轴建立空间直角坐标系,利用向量法计算与平面的法向量的数量积为0即可得证;(2)分别计算出平面和平面的法向量,然后利用向量夹角公式即可求解.【小问1详解】证明:因为平面平面ABCD,平面平面ABCD,且,所以平面ABCD,连接BD,则等边三角形,所以,以为原点,为轴,竖直向上为轴建立如图所示的空间直角坐标系,则,设为平面的法向量,因为,则有,取,又因为,所以,因为平面,所以平面;【小问2详解】解:分别设为平面和平面的法向量,因为,则有,取,因,则有,取,所以,由图可知二面角为锐二面角,所以二面角的余弦值为.21、(1)12(2)18【解析】(1)根据已知的,利用等差数列的通项公式和前n项和公式即可列式求解;(2)由第(1)问中求解出的的通项公式,要求前12项绝对值的和,可以发现,该数列前6项为正项,后6项为负项,因此在算和的时候,后6项和可以取原通项公式的相反数即可计算,即为,然后再加上前6项和,即为要求的前12项绝对值的和.【小问1详解】由题意可得,在等差数列中,已知公差,前项和所以,解之得,所以n=12【小问2详解】由(1)可知数列{
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025服务员聘用合同
- 2025借款合同填写注意事项
- 施工安全合同书(乙方承担全部责任版)
- 课题申报参考:黎巴嫩女性文学中的性别叙事与国家建构
- 课题申报参考:老龄化背景下衰老信念对年长员工工作绩效影响的机制研究
- 2025年新世纪版选修1历史上册阶段测试试卷
- 2025年外研版三年级起点选择性必修三语文上册月考试卷
- 2024年华东师大版八年级地理上册月考试卷含答案
- 2025年人教新起点八年级历史下册月考试卷含答案
- 2025年度物联网设备制造与销售合同范本4篇
- 2024年山东省泰安市高考物理一模试卷(含详细答案解析)
- 护理指南手术器械台摆放
- 肿瘤患者管理
- 2025年中国航空部附件维修行业市场竞争格局、行业政策及需求规模预测报告
- 2025春夏运动户外行业趋势白皮书
- 《法制宣传之盗窃罪》课件
- 通信工程单位劳动合同
- 2024年医疗器械经营质量管理规范培训课件
- 零部件测绘与 CAD成图技术(中职组)冲压机任务书
- 2024年计算机二级WPS考试题库380题(含答案)
- 高低压配电柜产品营销计划书
评论
0/150
提交评论