版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省枣庄现代实验学校2025届数学高一上期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若一元二次不等式的解集为,则的值为()A. B.0C. D.22.下列函数,其中既是偶函数又在区间上单调递减的函数为A. B.C. D.3.集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中的角α的终边在单位圆中的位置(阴影部分)是()A. B.C. D.4.若关于的函数的最大值为,最小值为,且,则实数的值为()A.2020 B.2019C.1009 D.10105.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分且不必要条件 D.既不充分也不必要条件6.三条直线l1:ax+by-1=0,l2:2x+(a+2)y+1=0,l3:bx-2y+1=0,若l1,l2都和l3垂直,则a+b等于()A. B.6C.或6 D.0或47.已知,,且,,则的值是A. B.C. D.8.已知,且在区间有最大值,无最小值,则=()A B.C. D.9.已知某几何体的三视图如图所示,则该几何体的最长棱为()A.4 B.C. D.210.若命题:,则命题的否定为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若关于x的不等式ax2+bx+c>0的解集为{x|1<x<2},则关于x的不等式cx2+bx+a>0的解集是______12.已知函数的图象恒过定点,若点也在函数的图象上,则_________13.已知函数且关于的方程有四个不等实根,写出一个满足条件的值________14.的值为________15.函数的单调递增区间为__________16.两平行直线与之间的距离______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,集合(1)当时,求;(2)若,求实数的取值范围;(3)若,求实数的取值范围18.求满足下列条件的直线方程.(1)经过点A(-1,-3),且斜率等于直线3x+8y-1=0斜率的2倍;(2)过点M(0,4),且与两坐标轴围成三角形的周长为12.19.已知函数(1)写出函数单调递减区间和其图象的对称轴方程;(2)用五点法作图,填表并作出在图象.xy20.已知二次函数()若函数在上单调递减,求实数的取值范围()是否存在常数,当时,在值域为区间且?21.若两个函数和对任意,都有,则称函数和在上是疏远的(1)已知命题“函数和在上是疏远的”,试判断该命题的真假.若该命题为真命题,请予以证明;若为假命题,请举反例;(2)若函数和在上是疏远的,求整数a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由不等式与方程的关系转化为,从而解得【详解】解:∵不等式kx2﹣2x+k<0的解集为{x|x≠m},∴,解得,k=﹣1,m=﹣1,故m+k=﹣2,故选:C2、A【解析】分别考查函数的奇偶性和函数的单调性即可求得最终结果.【详解】逐一考查所给的函数的性质:A.,函数为偶函数,在区间上单调递减;B.,函数为非奇非偶函数,在区间上单调递增;C.,函数为奇函数,在区间上单调递减;D.,函数为偶函数,在区间上单调递增;据此可得满足题意的函数只有A选项.本题选择A选项.【点睛】本题主要考查函数的单调性,函数的奇偶性等知识,意在考查学生的转化能力和计算求解能力.3、C【解析】利用赋值法来求得正确答案.【详解】当k=2n,n∈Z时,n360°+45°≤α≤n360°+90°,n∈Z;当k=2n+1,n∈Z时,n360°+225°≤α≤n360°+270°,n∈Z.故选:C4、D【解析】化简函数,构造函数,再借助函数奇偶性,推理计算作答.【详解】依题意,当时,,,则,当时,,,即函数定义域为R,,令,,显然,即函数是R上的奇函数,依题意,,,而,即,而,解得,所以实数的值为.故选:D5、A【解析】解指数不等式和对数不等式,求出两个命题的等价命题,进而根据充要条件的定义,可得答案【详解】“”“”,“”“”,“”是“”的充分而不必要条件,故“”是“”的的充分而不必要条件,故选:6、C【解析】根据相互垂直的两直线斜率之间的关系对b分类讨论即可得出【详解】l1,l2都和l3垂直,①若b=0,则a+2=0,解得a=﹣2,∴a+b=﹣2②若b≠0,则1,1,联立解得a=2,b=4,∴a+b=6综上可得:a+b的值为﹣2或6故选C【点睛】本题考查了相互垂直的直线斜率之间的关系、分类讨论方法,考查了推理能力与计算能力,属于基础题7、B【解析】由,得,所以,,得,,所以,从而有,.故选:B8、C【解析】结合题中所给函数的解析式可得:直线为的一条对称轴,∴,∴,又,∴当k=1时,.本题选择C选项.9、B【解析】根据三视图得到几何体的直观图,然后结合图中的数据计算出各棱的长度,进而可得最长棱【详解】由三视图可得,该几何体是如图所示的四棱锥,底面是边长为2的正方形,侧面是边长为2的正三角形,且侧面底面根据图形可得四棱锥中的最长棱为和,结合所给数据可得,所以该四棱锥的最长棱为故选B【点睛】在由三视图还原空间几何体时,要结合三个视图综合考虑,根据三视图表示的规则,空间几何体的可见轮廓线在三视图中为实线、不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以主视图和俯视图为主,结合左视图进行综合考虑.熟悉常见几何体的三视图,能由三视图得到几何体的直观图是解题关键.考查空间想象能力和计算能力10、D【解析】根据存在量词的否定是全称量词可得结果.【详解】根据存在量词的否定是全称量词可得命题的否定为.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由条件可得a<0,且1+2=,1×2=.b=a>0,c=2a>0,可得要解得不等式即x2+x>0,由此求得它的解集【详解】∵关于x的不等式ax2+bx+c>0的解集为{x|1<x<2},∴a<0,且1+2=,1×2=∴b=a>0,c=2a>0,∴=,=故关于x的不等式cx2+bx+a>0,即x2+x>0,即(x+1)(x)>0,故x<1或x>,故关于x的不等式cx2+bx+a>0的解集是,故答案为【点睛】本题主要考查一元二次不等式的解法,一元二次方程根与系数的关系,属于基础题12、【解析】根据对数过定点可求得,代入构造方程可求得结果.【详解】,,,解得:.故答案为:.13、(在之间都可以).【解析】画出函数的图象,结合图象可得答案.【详解】如图,当时,,当且仅当时等号成立,当时,,要使方程有四个不等实根,只需使即可,故答案为:(在之间都可以).14、【解析】根据两角和的正弦公式即可求出【详解】原式故答案为:15、【解析】由可得,或,令,因为在上递减,函数在定义域内递减,根据复合函数的单调性可得函数的单调递增区间为,故答案为.16、2【解析】根据平行线间距离公式可直接求解.【详解】直线与平行由平行线间距离公式可得故答案为:2【点睛】本题考查了平行线间距离公式的简单应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】(1)求出集合,利用并集的定义可求得集合;(2)利用可得出关于实数的不等式组,由此可解得实数的取值范围;(3)分和两种情况讨论,结合可得出关于实数的不等式组,可求得实数的取值范围.【详解】(1)当时,,则;(2)由知,解得,即的取值范围是;(3)由得①若,即时,符合题意;②若,即时,需或得或,即综上知,即实数的取值范围为【点睛】易错点睛:在求解本题第(3)问时,容易忽略的情况,从而导致求解错误.18、(1)3x+4y+15=0(2)4x+3y-12=0或4x-3y+12=0.【解析】根据直线经过点A,再根据斜率等于直线3x+8y-1=0斜率2倍求出斜率的值,然后根据直线方程的点斜式写出直线的方程,化为一般式;直线经过点M(0,4),说明直线在y轴的截距为4,可设直线在x轴的截距为a,利用三角形周长为12列方程求出a,利用直线方程的截距式写出直线的方程,然后化为一般方程.试题解析:(1)因为3x+8y-1=0可化为y=-x+,所以直线3x+8y-1=0的斜率为-,则所求直线的斜率k=2×(-)=-又直线经过点(-1,-3),因此所求直线的方程为y+3=-(x+1),即3x+4y+15=0.(2)设直线与x轴的交点为(a,0),因为点M(0,4)在y轴上,所以由题意有4++|a|=12,解得a=±3,所以所求直线的方程为或,即4x+3y-12=0或4x-3y+12=0.【点睛】当直线经过点A,并给出斜率的条件时,根据斜率与已知直线的斜率关系求出斜率值,然后根据直线方程的点斜式写出直线的方程,化为一般式;当涉及到直线与梁坐标轴所围成的三角形的周长和面积时,一般利用直线方程的截距式解决问题较方便一些,但使用点斜式也好,截距式也好,它们都有不足之处,点斜式只能表达斜率存在的直线,截距式只能表达截距存在而且不为零的直线,因此使用时要注意补充答案.19、(1)递减区间,对称轴方程:;(2)见解析【解析】(1)由正弦型函数的单调性与对称性即可求得的单调区间与对称轴;(2)根据五点作图法规则补充表格,然后在所给坐标中描出所取五点,以光滑曲线连接即可.【详解】(1)令,解得,令,解得,所以函数的递减区间为,对称轴方程:;(2)0xy131-11【点睛】本题考查正弦型函数的单调性与对称性,五点法作正(余)弦型函数的图像,属于基础题.20、(1).(2)存在常数,,满足条件【解析】(1)结合二次函数的对称轴得到关于实数m的不等式,求解不等式可得实数的取值范围为(2)在区间上是减函数,在区间上是增函数.据此分类讨论:①当时,②当时,③当,综上可知,存在常数,,满足条件试题解析:()∵二次函数的对称轴为,又∵在上单调递减,∴,,即实数的取值范围为()在区间上是减函数,在区间上是增函数①当时,在区间上,最大,最小,∴,即,解得②当时,在区间上,最大,最小,∴,解得③当,在区间上,最大,最小,∴,即,解得或,∴综上可知,存在常数,,满足条件点睛:二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025北京市个体工商户雇工劳动合同书范文
- 2025年度按摩店合伙人市场分析与竞争策略协议3篇
- 2025年度农村墓地建设项目投资合作协议书
- 二零二五年度养老公寓入住与休闲娱乐服务合同3篇
- 二零二五年度公司企业间新能源车辆购置借款合同3篇
- 2025年度工伤赔偿争议解决机制协议书3篇
- 二零二五年度养老机构兼职校医照护服务合同3篇
- 二零二五年度养殖场专业技术人员聘用合同3篇
- 二零二五年度地下停车场开发与运营管理合同3篇
- 二零二五年度智能电网设备采购合同风险识别与防范3篇
- TSG 51-2023 起重机械安全技术规程 含2024年第1号修改单
- 《正态分布理论及其应用研究》4200字(论文)
- GB/T 45086.1-2024车载定位系统技术要求及试验方法第1部分:卫星定位
- 浙江省杭州市钱塘区2023-2024学年四年级上学期英语期末试卷
- 1古诗文理解性默写(教师卷)
- 广东省广州市越秀区2021-2022学年九年级上学期期末道德与法治试题(含答案)
- 2024-2025学年六上科学期末综合检测卷(含答案)
- 在线教育平台合作合同助力教育公平
- 工地钢板短期出租合同模板
- 女排精神课件教学课件
- 2024年湖南省公务员考试《行测》真题及答案解析
评论
0/150
提交评论