版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省天水市清水县第六中学2025届高一上数学期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.集合的真子集的个数是()A. B.C. D.2.下列各组函数表示同一函数的是()A., B.,C., D.,3.为了得到函数的图象,可以将函数的图象A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度4.将函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图像向左平移个单位,得到的图像对应的解析式为()A. B.C. D.5.已知定义在上的函数满足,则()A. B.C. D.6.已知函数,,若对任意,总存在,使得成立,则实数取值范围为A. B.C. D.7.函数(且)的图象恒过定点,点又在幂函数的图象上,则的值为()A.-8 B.-9C. D.8.下列命题中不正确的是()A.一组数据1,2,3,3,4,5的众数大于中位数B.数据6,5,4,3,3,3,2,2,2,1的分位数为5C.若甲组数据的方差为5,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是乙D.为调查学生每天平均阅读时间,某中学从在校学生中,利用分层抽样的方法抽取初中生20人,高中生10人.经调查,这20名初中生每天平均阅读时间为60分钟,这10名高中生每天平均阅读时间为90分钟,那么被抽中的30名学生每天平均阅读时间为70分钟9.已知正数、满足,则的最小值为A. B.C. D.10.设全集,集合,,则等于A. B.{4}C.{2,4} D.{2,4,6}二、填空题:本大题共6小题,每小题5分,共30分。11.设为三个随机事件,若与互斥,与对立,且,,则_____________12.已知点,若,则点的坐标为_________.13.已知,且,则实数的取值范围为__________14.如图,扇形的周长是6,该扇形的圆心角是1弧度,则该扇形的面积为______.15.命题“,”的否定是______16.已知一元二次不等式对一切实数x都成立,则k的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,且满足,求:的值18.如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=CD=1,BC=2,PD=(Ⅰ)求证:PD⊥平面PBC;(Ⅱ)求直线AB与平面PBC所成角的大小;(Ⅲ)求二面角P-AB-C的正切值19.已知扇形的周长为30(1)若该扇形的半径为10,求该扇形的圆心角,弧长及面积;(2)求该扇形面积的最大值及此时扇形的半径.20.已知函数.(1)若不等式的解集为,求不等式的解集;(2)若,求不等式的解集.21.已知函数的图象关于直线对称,且图象相邻两个最高点的距离为.(1)求和的值;(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】确定集合的元素个数,利用集合真子集个数公式可求得结果.【详解】集合的元素个数为,故集合的真子集个数为.故选:B.2、A【解析】根据相同函数的定义,分别判断各个选项函数的定义域和对应关系是否都相同,即可得出答案.【详解】解:对于A,两个函数的定义域都是,,对应关系完全一致,所以两函数是相同函数,故A符合题意;对于B,函数的定义域为,函数的定义域为,故两函数不是相同函数,故B不符题意;对于C,函数的定义域为,函数的定义域为,故两函数不是相同函数,故C不符题意;对于D,函数的定义域为,函数的定义域为,故两函数不是相同函数,故D不符题意.故选:A.3、D【解析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.4、B【解析】由三角函数的平移变换即可得出答案.【详解】函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得,再将所得的图象向左平移个单位可得故选:B.5、B【解析】分别令,,得到两个方程,解方程组可求得结果【详解】∵,∴当时,,①,当时,,②,,得,解得故选:B6、B【解析】分别求出在的值域,以及在的值域,令在的最大值不小于在的最大值,得到的关系式,解出即可.【详解】对于函数,当时,,由,可得,当时,,由,可得,对任意,,对于函数,,,,对于,使得,对任意,总存在,使得成立,,解得,实数的取值范围为,故选B【点睛】本题主要考查函数的最值、全称量词与存在量词的应用.属于难题.解决这类问题的关键是理解题意、正确把问题转化为最值和解不等式问题,全称量词与存在量词的应用共分四种情况:(1)只需;(2),只需;(3),只需;(4),,.7、A【解析】令,可得点,设,把代入可得,从而可得的值.【详解】∵,令,得,∴,∴的图象恒过点,设,把代入得,∴,∴,∴.故选:A8、A【解析】由中位数以及众数判断A;由百分位数的定义计算判断B;计算乙组数据的方差判断C;计算被抽中的30名学生每天平均阅读时间从而判断D.【详解】对于A,中位数为和众数相等,故A错误;对于B,将该组数据从小到大排列为,,则该组数据的分位数为5,故B正确;对于C,乙组数据,方差为,则这两组数据中较稳定的是乙,故C正确;对于D,被抽中的30名学生每天平均阅读时间为,故D正确;故选:A9、B【解析】由得,再将代数式与相乘,利用基本不等式可求出的最小值【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题10、C【解析】由并集与补集的概念运算【详解】故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由与对立可求出,再由与互斥,可得求解.【详解】与对立,,与互斥,故答案为:.12、(0,3)【解析】设点的坐标,利用,求解即可【详解】解:点,,,设,,,,,解得,点的坐标为,故答案为:【点睛】本题考查向量的坐标运算,向量相等的应用,属于基础题13、【解析】,该函数的定义域为,又,故为上的奇函数,所以等价于,又为上的单调减函数,,也即是,解得,填点睛:解函数不等式时,要注意挖掘函数的奇偶性和单调性14、2【解析】由扇形周长求得半径同,弧长,再由面积公式得结论【详解】设半径为,则,,所以弧长为,面积为故答案为:215、.【解析】全称命题的否定:将任意改为存在并否定原结论,即可知原命题的否定.【详解】由全称命题的否定为特称命题,所以原命题的否定:.故答案为:.16、【解析】由题意,函数的图象在x轴上方,故,解不等式组即可得k的取值范围【详解】解:因为不等式为一元二次不等式,所以,又一元二次不等式对一切实数x都成立,所以有,解得,即,所以实数k的取值范围是,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】根据二倍角公式,结合题意,可求得的值,根据降幂公式,两角和的正弦公式,化简整理,根据齐次式的计算方法,即可得答案.【详解】因为,整理可得,解得或因为,所以则18、(Ⅰ)见解析;(Ⅱ)30°;(Ⅲ).【解析】(Ⅰ)证明,则,又PD⊥PB即可证明平面(Ⅱ)过点D作AB的平行线交BC于点F,连结PF,DF与平面所成的角等于AB与平面所成的角,为直线DF和平面所成的角,在中,求解即可(Ⅲ)说明是二面角的平面角,在直角梯形ABCD内可求得,而,在中,求解即可【详解】(Ⅰ)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD又因为BC∥AD,所以PD⊥BC,又PD⊥PB,PB与BC相交于点B,所以,PD⊥平面PBC.(Ⅱ)过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF和平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=CF=1又AD⊥DC,故BC⊥DC,ABCD为直角梯形,所以,DF=.
在Rt△DPF中,PD=,DF=,sin∠DFP==所以,直线AB与平面PBC所成角为30°.(Ⅲ)设E是CD的中点,则PE⊥CD,又AD⊥平面PDC,所以PE⊥平面ABCD.
在平面ABCD内作EG⊥AB交AB的延长线于G,连EG,则∠PGE是二面角P-AB-C的平面角.在直角梯形ABCD内可求得EG=,而PE=,所以,在Rt△PEG中,tan∠PGE==所以,二面角P-AB-C的正切值为【点睛】本题考查二面角的平面角以及直线与平面所成角的求法,直线与平面垂直的判断定理的应用,要正确地找出线面角及二面角的平面角,然后解三角形即可.19、(1),,;(2),.【解析】(1)利用弧长公式,扇形面积公式即得;(2)由题可得,然后利用基本不等式即求.【小问1详解】由题知扇形的半径,扇形的周长为30,∴,∴,,.【小问2详解】设扇形的圆心角,弧长,半径为,则,∴,∴当且仅当,即取等号,所以该扇形面积的最大值为,此时扇形的半径为.20、(1)或(2)答案见解析【解析】(1)由已知得,4是方程的两根,根据一元二次方程的根与系数的关系求得m,n,代入不等式,求解可得答案;(2)代入已知条件得,分,,,,,分别求解不等式可得答案.【小问1详解】解:依题意,的解集为,故,4是方程的两根,则,解得,故或,故不等式的解集为或.【小问2详解】解:依题意,,若,(*)式化为,解得;若,则;当时,的解为或;当时,(*)式化为,该不等式无解;当时,的解为;当时,的解为;综上所述,若,不等式的解集为;若,不等式的解集为或;若,不等式无解;若,不等式的解集为;若,不等式的解集为.21、(1),;(2)【解析】(1)根据对称轴和周期可求和的值(2)由题设可得,利用同角的三角函数的基本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人卫版法医精神病学
- 有关产品销售合同范文大全
- 脑出血肢体偏瘫个案护理
- 二手房买卖合同补充条款2024年
- 常见房屋租赁合同简化
- 喝酒对肝脏的危害流行病学
- 眼睛损伤角膜擦伤护理诊断
- 《生命早期营养状况》课件
- 急诊科护理质量安全
- 肺癌镇静病人的护理措施
- 《数字媒体技术导论》全套教学课件
- 海南乐东黎族自治县事业单位定向公开招聘驻县部队随军家属工作人员5人(第1号)(高频重点复习提升训练)共500题附带答案详解
- GB/T 44257.1-2024电动土方机械用动力电池第1部分:安全要求
- 广东省深圳市宝安区2023-2024学年七年级下学期期末数学试题(无答案)
- 浙教版劳动九年级项目四任务二《统筹规划与工作分配》教案
- 国家开放大学专科《法理学》(第三版教材)形成性考核试题及答案
- 洗浴中心传染病病例防控措施
- 施氏十二字养生功防治颈椎病教程文件
- 子宫内膜癌-医师教学查房
- 斯拉夫送行曲混声合唱谱
- (正式版)SHT 3158-2024 石油化工管壳式余热锅炉
评论
0/150
提交评论