版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅州市蕉岭中学2025届数学高二上期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在棱长为1的正方体中,P、Q、R分别是棱AB、BC、的中点,以PQR为底面作一个直三棱柱,使其另一个底面的三个顶点也都在正方体的表面上,则这个直三棱柱的体积为()A. B.C. D.2.已知数列中,,(),则等于()A. B.C. D.23.设实系数一元二次方程在复数集C内的根为、,则由,可得.类比上述方法:设实系数一元三次方程在复数集C内的根为,则的值为A.﹣2 B.0C.2 D.44.如图,直四棱柱的底面是菱形,,,M是的中点,则异面直线与所成角的余弦值为()A. B.C. D.5.如图,在四面体中,,,,,为线段的中点,则等于()A B.C. D.6.已知正三棱柱中,,点为中点,则异面直线与所成角的余弦值为()A. B.C. D.7.算盘是中国古代的一项重要发明.现有一种算盘(如图1),共两档,自右向左分别表示个位和十位,档中横以梁,梁上一珠拨下,记作数字5,梁下五珠,上拨一珠记作数字1(如图2中算盘表示整数51).如果拨动图1算盘中的两枚算珠,可以表示不同整数的个数为()A.8 B.10C.15 D.168.设等差数列,前n项和分别是,若,则()A.1 B.C. D.9.椭圆上一点到一个焦点的距离为,则到另一个焦点的距离是()A. B.C. D.10.已知命题:;:若,则,则下列判断正确的是()A.为真,为真,为假 B.为真,为假,为真C.为假,为假,为假 D.为真,为假,为假11.已知椭圆和双曲线有共同焦点,是它们一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值为A.3 B.2C. D.12.两圆x2+y2+4x-4y=0和x2+y2+2x-12=0的公共弦所在直线的方程为()A.x+2y﹣6=0 B.x﹣3y+5=0C.x﹣2y+6=0 D.x+3y﹣8=0二、填空题:本题共4小题,每小题5分,共20分。13.下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程是,则_______.月份1234用水量4.5432.514.已知向量,,若与垂直,则___________.15.已知数列满足,,则使得成立的n的最小值为__________.16.一条光线从点射出,经x轴反射,其反射光线所在直线与圆相切,则反射光线所在的直线方程为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆过点,且离心率.(1)求椭圆的方程;(2)设直交椭圆于两点,判断点与以线段为直径的圆的位置关系,并说明理由.18.(12分)在平面直角坐标系xOy中,椭圆C1:的左、右焦点分别为,且椭圆C1与抛物线C2:y2=2px(p>0)在第一象限的交点为Q,已知.(1)求的面积(2)求抛物线C2的标准方程.19.(12分)已知定圆,过的一条动直线与圆相交于、两点,(1)当与定直线垂直时,求出与的交点的坐标,并证明过圆心;(2)当时,求直线的方程20.(12分)命题:函数有意义;命题:实数满足.(1)当且为真时,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.21.(12分)已知直线与双曲线相交于、两点.(1)当时,求;(2)是否存在实数,使以为直径的圆经过坐标原点?若存在,求出的值;若不存在,说明理由.22.(10分)已知数列的前项和为,且(1)求数列的通项公式;(2)记,求数列的前项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分别取的中点,连接,利用棱柱的定义证明几何体是三棱柱,再证明平面PQR,得到三棱柱是直三棱柱求解.【详解】如图所示:连接,分别取其中点,连接,则,且,所以几何体是三棱柱,又,且,所以平面,所以,同理,又,所以平面PQR,所以三棱柱是直三棱柱,因为正方体的棱长为1,所以,所以直三棱柱的体积为,故选:C2、D【解析】由已知条件可得,,…,即是周期为3的数列,即可求.【详解】由题设,知:,,,…,∴是周期为3的数列,而的余数为1,∴.故选:D.3、A【解析】用类比推理得到,再用待定系数法得到,,再根据求解.【详解】,由对应系数相等得:,.故选:A.【点睛】本题主要考查合情推理以及待定系数法,还考查了转化化归的思想和逻辑推理的能力,属于中档题.4、D【解析】用向量分别表示,利用向量的夹角公式即可求解.【详解】由题意可得,故选:D【点睛】本题主要考查用向量的夹角公式求异面直线所成的角,属于基础题.5、D【解析】根据空间向量的线性运算求解【详解】由已知,故选:D6、A【解析】根据异面直线所成角的定义,取中点为,则为异面直线和所成角或其补角,再解三角形即可求出【详解】如图所示:设中点为,则在三角形中,为中点,为中位线,所以有,,所以为异面直线和所成角或其补角,在三角形中,,所以由余弦定理有,故选:A.7、A【解析】根据给定条件分类探求出拨动两枚算珠的结果计算得解.【详解】拨动图1算盘中的两枚算珠,有两类办法,由于拨动一枚算珠有梁上、梁下之分,则只在一个档拨动两枚算珠共有4种方法,在每一个档各拨动一枚算珠共有4种方法,由分类加法计数原理得共有8种方法,所以表示不同整数的个数为8.故选:A8、B【解析】根据等差数列的性质和求和公式变形求解即可【详解】因为等差数列,的前n项和分别是,所以,故选:B9、B【解析】利用椭圆的定义可得结果.【详解】在椭圆中,,由椭圆的定义可知,到另一个焦点的距离是.故选:B.10、D【解析】先判断出命题,的真假,即可判断.【详解】因为成立,所以命题为真,由可得或,所以命题为假命题,所以为真,为假,为假.故选:D.11、D【解析】设椭圆长半轴长为a1,双曲线的半实轴长a2,焦距2c.根据椭圆及双曲线的定义可以用a1,a2表示出|PF1|,|PF2|,在△F1PF2中根据余弦定理可得到,利用基本不等式可得结论【详解】如图,设椭圆的长半轴长为a1,双曲线的半实轴长为a2,则根据椭圆及双曲线的定义:|PF1|+|PF2|=2a1,|PF1|﹣|PF2|=2a2,∴|PF1|=a1+a2,|PF2|=a1﹣a2,设|F1F2|=2c,∠F1PF2=,则:在△PF1F2中,由余弦定理得,4c2=(a1+a2)2+(a1﹣a2)2﹣2(a1+a2)(a1﹣a2)cos∴化简得:a12+3a22=4c2,该式可变成:,∴≥2∴,故选D【点睛】本题考查圆锥曲线的共同特征,考查通过椭圆与双曲线的定义求焦点三角形三边长,考查利用基本不等式求最值问题,属于中档题12、C【解析】两圆方程相减得出公共弦所在直线的方程.【详解】两圆方程相减得,即x﹣2y+6=0则公共弦所在直线的方程为x﹣2y+6=0故选:C二、填空题:本题共4小题,每小题5分,共20分。13、25【解析】根据表格数据求出,代入,即可求出.【详解】解:由题意知:,,将代入线性回归方程,即,解得:.故答案为:5.25.14、【解析】根据与垂直,可知,根据空间向量的数量积运算可求出的值,结合向量坐标求向量模的求法,即可得出结果.【详解】解:与垂直,,则,解得:,,则,.故答案为:.15、11【解析】由题设可得,结合等比数列的定义知从第二项开始是公比为2的等比数列,进而写出的通项公式,即可求使成立的最小值n.【详解】因为,所以,两式相除得,整理得.因为,故从第二项开始是等比数列,且公比为2,因为,则,所以,则,由得:,故故答案为:11.16、或【解析】点关于轴的对称点为,即反射光线过点,分别讨论反射光线的斜率存在与不存在的情况,进而求解即可【详解】点关于轴的对称点为,(1)设反射光线的斜率为,则反射光线的方程为,即,因为反射光线与圆相切,所以圆心到反射光线的距离,即,解得,所以反射光线方程为:;(2)当不存在时,反射光线,此时,也与圆相切,故答案为:或【点睛】本题考查直线在光学中的应用,考查圆的切线方程三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)点G在以AB为直径的圆外【解析】解法一:(Ⅰ)由已知得解得所以椭圆E的方程为(Ⅱ)设点AB中点为由所以从而.所以.,故所以,故G在以AB为直径的圆外解法二:(Ⅰ)同解法一.(Ⅱ)设点,则由所以从而所以不共线,所以锐角.故点G在以AB为直径的圆外考点:1、椭圆的标准方程;2、直线和椭圆的位置关系;3、点和圆的位置关系18、(1)(2)【解析】(1)设,由椭圆的定义可得,结合余弦定理可得出的值,从而可得面积.(2)设,根据的面积结合椭圆的方程求出点的坐标,代入抛物线可得答案.【小问1详解】由椭圆方程知a=2,b=1,,设,则即,求得所以的面积为【小问2详解】设由(1)中,得又,,所以代入抛物线方程得,所以所以抛物线的标准方程为19、(1),证明见解析;(2)或.【解析】(1)根据题意可设直线的方程为,将点的坐标代入直线的方程,可求得的值,再将直线、的方程联立,可得出这两条直线的交点的坐标,将圆心的坐标代入直线的方程可证得结论成立;(2)利用勾股定理可求得圆心到直线的距离,对直线的斜率是否存在进行分类讨论,设出直线方程,利用点到直线的距离公式求出参数的值,即可得出直线的方程.【小问1详解】解:当直线与定直线垂直时,可设直线的方程为,将点的坐标代入直线的方程可得,则,此时,直线的方程为,联立可得,即点,圆心的坐标为,因为,故直线过圆心.【小问2详解】解:设圆心到直线的距离为,则.当直线的斜率不存在时,直线的方程为,此时圆心到直线的距离为,合乎题意;当直线的斜率存在时,可设直线的方程为,即,由题意可得,解得,此时直线的方程为,即.综上所述,直线的方程为或.20、(1);(2)【解析】(1)首先将命题,化简,然后由为真可得,均为真,取交集即可求出实数的取值范围;(2)将是的充分不必要条件转化为是的必要不充分条件,进而将问题转化为,从而求出实数的取值范围【详解】(1)若命题为真,则,解得,当时,命题,若命题为真,则,解得,所以,因为为真,所以,均为真,所以,所以,所以实数的取值范围为(2)因为是的充分不必要条件,所以是的必要不充分条件,所以,所以或,所以,所以实数的取值范围是【点睛】本题主要考查根据真值表判断复合命题中的单个命题的真假,根据充分不必要条件求参数的取值范围,同时考查一元二次不等式的解法,分式不等式的解法.第(2)问关键是将问题等价转化为两个集合间的真包含关系21、(1);(2)不存在,理由见解析.【解析】(1)当时,将直线的方程与双曲线的方程联立,列出韦达定理,利用弦长公式可求得;(2)假设存在实数,使以为直径的圆经过坐标原点,设、,将直线与双曲线的方程联立,列出韦达定理,由已知可得出,利用平面向量数量积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第8章 小学生心理咨询与辅导课件
- 2024年小学非在编顶岗教师公开招聘考试题库(含答案)
- 非负数讲解课件
- 被动运输课件动画
- 2024年拉萨客运资格证实践操作考什么
- 2024年广东客运从业资格证救护考试题
- 2024年宁德客车上岗证模拟考试
- 2024年甘肃客运从业资格证价格
- 2024年潍坊考客运资格证试题题库软件
- 2024年海口客运从业资格考试题库答案
- 水平定向钻施工机械
- 室内设计行业优势与劣势分析
- 2024年滁州市中级人民法院招考聘用司法辅助人员高频考题难、易错点模拟试题(共500题)附带答案详解
- 城市管理知识竞赛考试题库200题(含答案)
- 北京市东城区六年级(上)期末语文试卷
- 乡村振兴农村设计案例分析报告
- 【体能大循环】聚焦体能循环-探索运动奥秘-幼儿园探究体能大循环有效开展策略课件
- 《化工设备检维修实训》课程标准(煤炭清洁利用技术)
- AI在航空航天领域中的应用
- 餐饮员工心态培训课件
- 2024年注册消防工程师题库及参考答案【完整版】
评论
0/150
提交评论