版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
西安市航空六一八中学2025届高一上数学期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数是指数函数,则的值是A.4 B.1或3C.3 D.12.设集合,则()A. B.C. D.3.已知,分别是圆和圆上的动点,点在直线上,则的最小值是()A. B.C. D.4.函数的图象如图所示,则()A. B.C. D.5.要完成下列两项调查:(1)某社区有100户高收入家庭,210户中等收入家庭,90户低收入家庭,从中抽取100户调查有关消费购买力的某项指标;(2)从某中学高一年级的10名体育特长生中抽取3人调查学习情况;应采用的抽样方法分别是()A.(1)用简单随机抽样,(2)用分层随机抽样 B.(1)(2)都用简单随机抽样C.(1)用分层随机抽样,(2)用简单随机抽样 D.(1)(2)都用分层随机抽样6.若动点.分别在直线和上移动,则线段的中点到原点的距离的最小值为()A. B.C. D.7.下列函数中,既是奇函数又在上有零点的是A. B.C D.8.已知平面向量,,若,则实数值为()A.0 B.-3C.1 D.-19.已知函数的部分图象如图所示,则的值可以为A.1 B.2C.3 D.410.设是两个不同的平面,是一条直线,以下命题正确的是A.若,则 B.若,则C.若,则 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.写出一个同时满足以下条件的函数___________;①是周期函数;②最大值为3,最小值为;③在上单调12.已知集合A={2,log2m},B={m,n}(m,n∈R),且,则A∪B=___________.13.已知函数是幂函数,且过点,则___________.14.已知,且,则的最小值为__________.15.若函数y=是函数的反函数,则_________________16.函数的定义域为_______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,函数.(1)当时,解不等式;(2)若关于的方程的解集中恰有一个元素,求的取值范围;(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.18.某食品的保鲜时间y(单位:小时)与储存温度x(单位:)满足函数关系(为自然对数的底数,k、b为常数).若该食品在0的保鲜时间设计192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是______小时.19.已知函数的图象过点,.(1)求函数的解析式;(2)若函数在区间上有零点,求整数k的值;(3)设,若对于任意,都有,求m的取值范围.20.6月17日是联合国确定的“世界防治荒漠化和干旱日”,旨在进一步提高世界各国人民对防治荒漠化重要性的认识,唤起人们防治荒漠化的责任心和紧迫感.为增强全社会对防治荒漠化的认识与关注,聚集联合国2030可持续发展目标——实现全球土地退化零增长.自2004年以来,我国荒漠化和沙化状况呈现整体遏制、持续缩减、功能增强、成效明显的良好态势.治理沙漠离不开优质的树苗,现从苗圃中随机地抽测了400株树苗的高度(单位:),得到如图所示的频率分布直方图.(1)求频率分布直方图中实数的值和抽到的树苗的高度在的株数;(2)估计苗圃中树苗的高度的平均数和中位数.(同一组中数据用该组区间的中点值作代表)21.已知函数(1)求函数的定义域,并判断函数的奇偶性;(2)对于,不等式恒成立,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由题意,解得.故选C考点:指数函数的概念2、D【解析】根据绝对值不等式的解法和二次函数的性质,分别求得集合,即可求解.【详解】由,解得,即,即,又由,即,所以.故选:D.3、B【解析】由已知可得,,求得关于直线的对称点为,则,计算即可得出结果.【详解】由题意可知圆的圆心为,半径,圆的圆心为,半径设关于直线的对称点为,则解得,则因为,分别在圆和圆上,所以,,则因为,所以故选:B.4、C【解析】根据正弦型函数图象与性质,即可求解.【详解】由图可知:,所以,故,又,可求得,,由可得故选:C.5、C【解析】根据简单随机抽样、分层抽样的适用条件进行分析判断.【详解】因为有关消费购买力的某项指标受家庭收入的影响,而社区家庭收入差距明显,所以①用分层抽样;从10名体育特长生中抽取3人调查学习情况,个体之间差别不大,且总体和样本容量较小,所以②用简单随机抽样.故选:C6、C【解析】先分析出M的轨迹,再求到原点的距离的最小值.【详解】由题意可知:M点的轨迹为平行于直线和且到、距离相等的直线l,故其方程为:,故到原点的距离的最小值为.故选:C【点睛】解析几何中与动点有关的最值问题一般的求解思路:①几何法:利用图形作出对应的线段,利用几何法求最值;②代数法:把待求量的函数表示出来,利用函数求最值.7、D【解析】选项中的函数均为奇函数,其中函数与函数在上没有零点,所以选项不合题意,中函数为偶函数,不合题意;中函数的一个零点为,符合题意,故选D.8、C【解析】根据,由求解.【详解】因为向量,,且,所以,解得,故选:C.9、B【解析】由图可知,故,选.10、C【解析】对于A、B、D均可能出现,而对于C是正确的二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不唯一)【解析】根据余弦函数的性质,构造满足题意的函数,由此即可得到结果.详解】由题意可知,,因为的周期为,满足条件①;又,所以,满足条件②;由于函数在区间上单调递减,所以区间上单调递减,故满足条件③.故答案为:.12、【解析】根据条件得到,解出,进而得到.【详解】因为,所以且,所以,解得:,则,,所以.故答案为:13、【解析】由题意,设代入点坐标可得,计算即得解【详解】由题意,设,过点故,解得故则故答案为:14、【解析】利用已知条件凑出,再根据“”的巧用,最后利用基本不等式即可求解.【详解】由,得,即.因为所以,,则=,当且仅当即时,等号成立.所以当时,取得最小值为.故答案为:.15、0【解析】可得,再代值求解的值即可【详解】的反函数为,则,则,则.故答案为:016、【解析】由题可知,解不等式即可得出原函数的定义域.【详解】对于函数,有,即,解得,因此,函数的定义域为.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2).(3)【解析】(1)当时,解对数不等式即可;(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论的取值范围进行求解即可;(3)根据条件得到,恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.试题解析:(1)由,得,解得(2)由f(x)﹣log2[(a﹣4)x+2a﹣5]=0得log2(a)﹣log2[(a﹣4)x+2a﹣5]=0即log2(a)=log2[(a﹣4)x+2a﹣5],即a=(a﹣4)x+2a﹣5>0,①则(a﹣4)x2+(a﹣5)x﹣1=0,即(x+1)[(a﹣4)x﹣1]=0,②,当a=4时,方程②的解为x=﹣1,代入①,成立当a=3时,方程②的解为x=﹣1,代入①,成立当a≠4且a≠3时,方程②的解为x=﹣1或x,若x=﹣1是方程①的解,则a=a﹣1>0,即a>1,若x是方程①的解,则a=2a﹣4>0,即a>2,则要使方程①有且仅有一个解,则1<a≤2综上,若方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,则a的取值范围是1<a≤2,或a=3或a=4(3)函数f(x)在区间[t,t+1]上单调递减,由题意得f(t)﹣f(t+1)≤1,即log2(a)﹣log2(a)≤1,即a≤2(a),即a设1﹣t=r,则0≤r,,当r=0时,0,当0<r时,,∵y=r在(0,)上递减,∴r,∴,∴实数a的取值范围是a【一题多解】(3)还可采用:当时,,,所以在上单调递减则函数在区间上的最大值与最小值分别为,即,对任意成立因为,所以函数在区间上单调递增,时,有最小值,由,得故的取值范围为18、24【解析】由题意得:,所以时,.考点:函数及其应用.19、(1);(2)的取值为2或3;(3).【解析】(1)根据题意,得到,求得的值,即可求解;(2)由(1)可得,得到,设,根据题意转化为函数在上有零点,列出不等式组,即可求解;(3)求得的最大值,得出,得到,设,结合单调性和最值,即可求解.【详解】(1)函数的图像过点,所以,解得,所以函数的解析式为.(2)由(1)可知,,令,得,设,则函数在区间上有零点,等价于函数在上有零点,所以,解得,因为,所以的取值为2或3.(3)因为且,所以且,因为,所以的最大值可能是或,因为所以,只需,即,设,在上单调递增,又,∴,即,所以,所以m的取值范围是.【点睛】已知函数的零点个数求解参数的取值范围问题的常用方法:1、分离参数法:一般命题的情境为给出区间,求满足函数零点个数的参数范围,通常解法为从中分离出参数,构造新的函数,求得新函数的最值,根据题设条件构建关于参数的不等式,从而确定参数的取值范围;2、分类讨论法:一般命题的情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类的标准,在每个小区间内研究函数零点的个数是否符合题意,将满足题意的参数的各校范围并在一起,即为所求的范围.20、(1),342(2)189.8,190【解析】(1)由每个小长方形的面积的总和等于,即可通过列方程求出值,根据频数样本容量频率即可求出抽到的树苗的高度在的株数;(2)由频率分布直方图中每个小长方形的面积与对应小正方形底边中点的横坐标的乘积之和即为平均数,即可算出,利用平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标即为中位数,即可算出.【小问1详解】∵,∴,抽到的树苗的高度在的株数为(株)【小问2详解】苗圃中树苗的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工上班无证驾驶免责协议书(2篇)
- 二零二四年度战略合作协议:商务会议专用
- 二零二四年度在线教育平台建设与运营合同
- 二零二四年度蔬菜订购与价格锁定合同
- 组拼式大模板施工技术总结
- 冷水购销协议
- 演出节目道具制作合同
- 专项服务提供商协议
- 房屋买卖合同效力认定问题分析与启示
- 家庭护理厨师雇佣合同
- 七年级动点问题大全给力教育课资
- 农村土地承包法解说PPT课件
- 中国宏观经济形势分析框架PPT课件
- 儿童英文自我介绍课件PPT
- 手术室优质护理服务措施(完整版)
- 厂房、设施、设备维护保养计划(完整版)
- 供应商冲突矿产调查表填写说明[沐风教学]
- 人教中职数学球PPT学习教案
- [QC成果]户外主变安装防坠落悬挂装置的研制范本
- 技工院校安全管理工作总结
- 采区变电所设备安装方案及安全技术措施
评论
0/150
提交评论