福建省厦门市重点中学2025届高二数学第一学期期末检测试题含解析_第1页
福建省厦门市重点中学2025届高二数学第一学期期末检测试题含解析_第2页
福建省厦门市重点中学2025届高二数学第一学期期末检测试题含解析_第3页
福建省厦门市重点中学2025届高二数学第一学期期末检测试题含解析_第4页
福建省厦门市重点中学2025届高二数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省厦门市重点中学2025届高二数学第一学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的左、右焦点分别为、,P为双曲线C的右支上一点.以O为圆心a为半径的圆与相切于点M,且,则该双曲线的渐近线为()A. B.C. D.2.若直线先向右平移一个单位,再向下平移一个单位,然后与圆相切,则c的值为()A.8或-2 B.6或-4C.4或-6 D.2或-83.已知复数满足(其中为虚数单位),则复数的虚部为()A. B.C. D.4.定义焦点相同,且离心率互为倒数的椭圆和双曲线为一对相关曲线.已知,是一对相关曲线的焦点,Р是这对相关曲线在第一象限的交点,则点Р与以为直径的圆的位置关系是()A.在圆外 B.在圆上C.在圆内 D.不确定5.如图甲是第七届国际数学家大会(简称ICME—7)的会徽图案,其主体图案是由图乙的一连串直角三角形演化而成的.已知,,,,为直角顶点,设这些直角三角形的周长从小到大组成的数列为,令,为数列的前项和,则()A.8 B.9C.10 D.116.年月日我国公布了第七次全国人口普查结果.自新中国成立以来,我国共进行了七次全国人口普查,如图为我国历次全国人口普查人口性别构成及总人口性别比(以女性为,男性对女性的比例)统计图,则下列说法错误的是()A.第五次全国人口普查时,我国总人口数已经突破亿B.第一次全国人口普查时,我国总人口性别比最高C.我国历次全国人口普查总人口数呈递增趋势D.我国历次全国人口普查总人口性别比呈递减趋势7.如图,在直三棱柱中,,,D为AB的中点,点E在线段上,点F在线段上,则线段EF长的最小值为()A B.C.1 D.8.如图1所示,抛物面天线是指由抛物面(抛物线绕其对称轴旋转形成的曲面)反射器和位于其焦点上的照射器(馈源,通常采用喇叭天线)组成的单反射面型天线,广泛应用于微波和卫星通讯等,具有结构简单、方向性强、工作频带宽等特点.图2是图1的轴截面,,两点关于抛物线的对称轴对称,是抛物线的焦点,是馈源的方向角,记为.焦点到顶点的距离与口径的比为抛物面天线的焦径比,它直接影响天线的效率与信噪比等.若馈源方向角满足,则该抛物面天线的焦径比为()A. B.C. D.29.设F是双曲线的左焦点,,P是双曲线右支上的动点,则的最小值为()A.5 B.C. D.910.已知双曲线的两个焦点为,,是此双曲线上的一点,且满足,,则该双曲线的方程是()A. B.C. D.11.人教A版选择性必修二教材的封面图案是斐波那契螺旋线,它被誉为自然界最完美的“黄金螺旋”,自然界存在很多斐波那契螺旋线的图案,例如向日葵、鹦鹉螺等.斐波那契螺旋线的画法是:以斐波那契数1,1,2,3,5,8,…为边长的正方形拼成长方形,然后在每个正方形中画一个圆心角为90°的圆弧,这些圆弧所连起来的弧线就是斐波那契螺旋线.下图为该螺旋线在正方形边长为1,1,2,3,5,8的部分,如图建立平面直角坐标系(规定小方格的边长为1),则接下来的一段圆弧所在圆的方程为()A. B.C. D.12.在中,a,b,c分别为角A,B,C的对边,已知,,的面积为,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.以抛物线C的顶点为圆心的圆交C于、两点,交C的准线于、两点.,,则C的焦点到准线的距离为____.14.过抛物线焦点的直线交抛物线于A,B两点,若线段AB中点的纵坐标为4,则线段AB的长度为___________.15.如图,在棱长为2的正方体中,E为BC的中点,点P在线段上,分别记四棱锥,的体积为,,则的最小值为______16.直线与直线垂直,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)王同学入读某大学金融专业,过完年刚好得到红包6000元,她计划以此作为启动资金进行理投资,每月月底获得的投资收益是该月月初投入资金的20%,并从中拿出1000元作为自己的生活费,余款作为资金全部投入下个月,如此继续.设第n个月月底的投资市值为an.(1)求证:数列{-5000}为等比数列;(2)如果王同学想在第二年过年的时候给奶奶买一台全身按摩椅(商场标价为12899元),将一年后投资市值全部取出来是否足够?18.(12分)已知抛物线C:经过点(1,-1).(1)求抛物线C的方程及其焦点坐标;(2)过抛物线C上一动点P作圆M:的一条切线,切点为A,求切线长|PA|的最小值.19.(12分)已知是等差数列,其n前项和为,已知(1)求数列的通项公式:(2)设,求数列的前n项和20.(12分)在数列中,,点在直线上.(1)求的通项公式;(2)记的前项和为,且,求数列的前项和.21.(12分)在四棱锥中,底面是边长为2的菱形,平面,,是的中点.(1)若为线段的中点,证明:平面;(2)线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求的长,若不存在,请说明理由.22.(10分)已知,(1)若,p且q为真命题,求实数x的取值范围;(2)若p是q的充分条件,求实数m的取值范围

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】连接、,利用中位线定理和双曲线定义构建参数关系,即求得渐近线方程.【详解】如图,连接、,∵M是的中点,∴是的中位线,∴,且,根据双曲线的定义,得,∴,∵与以原点为圆心a为半径的圆相切,∴,可得,中,,即得,,解得,即,得.由此得双曲线的渐近线方程为.故选:A.【点睛】本题考查了双曲线的定义的应用和渐近线的求法,属于中档题.2、A【解析】求出平移后的直线方程,再利用直线与圆相切并借助点到直线距离公式列式计算作答.【详解】将直线先向右平移一个单位,再向下平移一个单位所得直线方程为,因直线与圆相切,从而得,即,解得或,所以c的值为8或-2.故选:A3、A【解析】由题目条件可得,即,然后利用复数的运算法则化简.【详解】因为,所以,则故复数的虚部为.故选:A.【点睛】本题考查复数的相关概念及复数的乘除运算,按照复数的运算法则化简计算即可,较简单.4、A【解析】设椭圆的长轴长为,椭圆的焦距为,双曲线的实轴长为,根据题意可得,设,根据椭圆与双曲线的定义将分别用表示,设,再根据两点的距离公式将点的坐标用表示,从而可判断出点与圆的位置关系.【详解】解:设椭圆的长轴长为,椭圆的焦距为,双曲线的实轴长为,设椭圆和双曲线的离心率分别为,则,所以,以为直径的圆的方程为,设,则有,所以,设,,所以①,②,则①②得,所以,所以,将代入②得,所以,,则点到圆心的距离为,所以点Р在以为直径的圆外.故选:A.5、B【解析】由题意可得的边长,进而可得周长及,进而可得,可得解.【详解】由,可得,,,,所以,,所以前项和,所以,故选:B.6、D【解析】根据统计图判断各选项的对错.【详解】由统计图第五次全国人口普查时,男性和女性人口数都超过6亿,故总人口数超过12亿,A对,由统计图,第一次全国人口普查时,我国总人口性别比为107.56,超过余下几次普查的人口的性别比,B对,由统计图可知,我国历次全国人口普查总人口数呈递增趋势,C对,由统计图可知,第二次,第三次,第四次,第五次时总人口性别比呈递增趋势,D错,D错,故选:D.7、B【解析】根据给定条件建立空间直角坐标系,令,用表示出点E,F坐标,再由两点间距离公式计算作答.【详解】依题意,两两垂直,建立如图所示的空间直角坐标系,则,,设,则,设,有,线段EF长最短,必满足,则有,解得,即,因此,,当且仅当时取“=”,所以线段EF长的最小值为.故选:B8、B【解析】建立平面直角坐标系,利用题设条件得到得点坐标,代入抛物线方程化简即可求解【详解】建立如图所示的平面直角坐标系,设抛物线的方程为()在中,则所以则所以,所以将代入抛物线方程中得所以或即或(舍)当时,故选:B9、B【解析】由双曲线的的定义可得,于是将问题转化为求的最小值,由得出答案.【详解】设双曲线的由焦点为,且点A在双曲线的两支之间.由双曲线的定义可得,即所以当且仅当三点共线时,取得等号.故选:B10、A【解析】由,可得进一步求出,由此得到,则该双曲线的方程可求【详解】,即,则.即,则该双曲线的方程是:故选:A【点睛】方法点睛:求圆锥曲线的方程,常用待定系数法,先定式(根据已知确定焦点所在的坐标轴,设出曲线的方程),再定式(根据已知建立方程组解方程组得解).11、C【解析】由题意可知图中每90°的圆弧半径符合斐波那契数1,1,2,3,5,8,…,从而可求出下一段圆弧的半径为13,由于每一个圆弧为四分之一圆,从而可求出下一段圆弧所以圆的圆心,进而可得其方程【详解】解:由题意可知图中每90°的圆弧半径符合斐波那契数1,1,2,3,5,8,…,从而可求出下一段圆弧的半径为13,由题意可知下一段圆弧过点,因为每一段圆弧的圆心角都为90°,所以下一段圆弧所在圆的圆心与点的连线平行于轴,因为下一段圆弧半径为13,所以所求圆的圆心为,所以所求圆的方程为,故选:C12、C【解析】利用面积公式,求出,进而求出,利用余弦定理求出,再利用正弦定理求出【详解】由面积公式得:,因为的面积为,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故选:C二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【详解】解:设抛物线为y2=2px,如图:,又,解得,设圆的半径为,,解得:p=2,即C的焦点到准线的距离为:2.故答案为:2.14、9【解析】由焦点弦公式和中点坐标公式可得.详解】设,则,即,.故答案为:915、【解析】设,用参数表示目标函数,利用均值不等式求最值即可.【详解】取线段AD中点为F,连接EF、D1F,过P点引于M,于N,则平面,平面,则,∴,设,则,,即,,∴,当且仅当时,等号成立,故答案为:16、##【解析】根据两直线垂直得,即可求出答案.【详解】由直线与直线垂直得,.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)足够【解析】(1)由题意可得出递推关系,变形后利用等比数列的定义求证即可;(2)由(1)利用等比数列的通项公式求出,再求出,再计算即可得出结论.【小问1详解】依题意,第1个月底股票市值则又∴数列是首项为1200,公比为1.2的等比数列.【小问2详解】由(1)知∴∵,所以王同学将一年理财投资所得全部取出来是足够的.18、(1),焦点坐标为;(2)【解析】(1)将点代入抛物线方程求解出的值,则抛物线方程和焦点坐标可知;(2)设出点坐标,根据切线垂直于半径,根据点到点距离公式表示出,然后结合二次函数的性质求解出的最小值.【小问1详解】解:因为抛物线过点,所以,解得,所以抛物线的方程为:,焦点坐标为;【小问2详解】解:设,因为为圆的切线,所以,,所以,所以当时,四边形有最小值且最小值为.19、(1);(2).【解析】(1)利用等差数列的基本量,结合已知条件,列出方程组,求得首项和公差,即可写出通项公式;(2)根据(1)中所求,结合裂项求和法,即可求得.【小问1详解】因为是等差数列,其n前项和为,已知,设其公差为,故可得:,,解得,又,故.【小问2详解】由(1)知,,又,故.即.20、(1)(2)【解析】(1)由定义证明数列是等差数列,再由得出通项公式;(2)先由求和公式得出,再由裂项相消求和法求和即可.【小问1详解】由题意可知,,所以数列是公差的等差数列又,所以,故小问2详解】,则故21、(1)证明见解析;(2)存在点,且的长为,理由见解析.【解析】(1)取的中点为,连接,得到,结合面面平行的判定定理证得平面平面,进而得到平面;(2)以为原点,所在的直线分别为轴、轴,以垂直平面的直线为轴,建立空间直角坐标系,设,求得的法向量为和向量,结合向量的夹角公式列出方程,求得的值,即可求解.【小问1详解】证明:取的中点为,连接,因为分别为的中点,所以,又因为平面,且,所以平面平面,又由平面,所以平面.【小问2详解】解:以为原点,所在的直线分别为轴、轴,以垂直平面的直线为轴,建立空间直角坐标系,如图所示,因为底面是边长为2的菱形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论