版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省曲靖市宜良县第六中学2025届高一数学第一学期期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知幂函数的图象过(4,2)点,则A. B.C. D.2.化为弧度是()A. B.C. D.3.三条直线,,相交于一点,则的值是A.-2 B.-1C.0 D.14.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学学习和研究中,我们要学会以形助数.则在同一直角坐标系中,与的图像可能是()A. B.C. D.5.函数的值域为()A. B.C. D.6.已知函数f(x)=3x A. B.C. D.7.点P从O点出发,按逆时针方向沿周长为l的图形运动一周,O、P两点的距离y与点P所走路程x的函数关系如图所示,那么点P所走的图形是()A. B.C. D.8.下列各个关系式中,正确的是()A.={0}B.C.{3,5}≠{5,3}D.{1}{x|x2=x}9.设,,,则、、的大小关系是()A. B.C. D.10.下列所给四个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再去上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速A.①②④ B.④②③C.①②③ D.④①②二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数(1)当时,求的值域;(2)若,且,求的值;12.《三十六计》是中国古代兵法策略,是中国文化的瑰宝.“分离参数法”就是《三十六计》中的“调虎离山”之计在数学上的应用,例如,已知含参数的方程有解的问题,我们可分离出参数(调),将方程化为,根据的值域,求出的范围,继而求出的取值范围,已知,若关于x的方程有解,则实数的取值范围为___________.13.已知,且,写出一个满足条件的的值___________14.已知角的顶点为坐标原点,始边为x轴的正半轴,若是角终边上一点,且,则y=_______.15.已知函数的零点为1,则实数a的值为______16.在区间上随机取一个实数,则事件发生的概率为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,.(1)若,求实数t的取值范围;(2)若“”是“”的必要不充分条件,求实数t的取值范围18.已知直线的倾斜角为且经过点.(1)求直线的方程;(2)求点关于直线的对称点的坐标.19.已知f(x)是定义在R上偶函数,且当x≥0时,(1)用定义法证明f(x)在(0,+∞)上单调递增;(2)求不等式f(x)>0的解集.20.设函数(且)(1)若函数存在零点,求实数的最小值;(2)若函数有两个零点分别是,且对于任意的时恒成立,求实数的取值集合.21.设函数(1)若函数的图象关于原点对称,求函数的零点;(2)若函数在,的最大值为,求实数的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】设函数式为,代入点(4,2)得考点:幂函数2、D【解析】根据角度制与弧度制的互化公式,正确运算,即可求解.【详解】根据角度制与弧度制的互化公式,可得.故选:D.3、B【解析】联立两条已知直线求得交点坐标,待定系数即可求得参数值.【详解】联立与可得交点坐标为,又其满足直线,故可得,解得.故选:.4、B【解析】结合指数函数和对数函数的图像即可.【详解】是定义域为R的增函数,:-x>0,则x<0.结合选项只有B符合故选:B5、C【解析】由二倍角公式化简,设,利用复合函数求值域.【详解】函数,设,,则,由二次函数的图像及性质可知,所以的值域为,故选:C.6、B【解析】根据对数的运算性质求出,再根据指数幂的运算求出即可.【详解】由题意知,,则,所以.故选:B7、C【解析】认真观察函数的图象,根据其运动特点,采用排除法,即可求解.【详解】观察函数的运动图象,可以发现两个显著特点:①点运动到周长的一半时,最大;②点的运动图象是抛物线,设点为周长的一半,如下图所示:图1中,因为,不符合条件①,因此排除选项A;图4中,由,不符合条件①,并且的距离不是对称变化的,因此排除选项D;另外,在图2中,当点在线段上运动时,此时,其图象是一条线段,不符合条件②,因此排除选项B.故选:C8、D【解析】由空集的定义知={0}不正确,A不正确;集合表示有理数集,而不是有理数,所以B不正确;由集合元素的无序性知{3,5}={5,3},所以C不正确;{x|x2=x}={0,1},所以{1}{0,1},所以D正确.故选D.9、B【解析】利用指数函数、对数函数的单调性比较、、三个数与、的大小关系,由此可得出、、的大小关系.【详解】,即,,,因此,.故选:B.10、D【解析】根据回家后,离家的距离又变为可判断(1);由途中遇到一次交通堵塞,可判断中间有一段函数值没有发生变化;由为了赶时间开始加速,可判断函数的图像上升的速度越来越快;【详解】离开家不久发现自己把作业本忘在家里,回到家里,这时离家的距离为,故应先选图像(4);途中遇到一次交通堵塞,这这段时间与家的距离必为一定值,故应选图像(1);后来为了赶时间开始加速,则可知图像上升的速度越来越快,故应选图像(2);故选:D【点睛】本题主要考查函数图象的识别,解题的关键是理解题干中表述的变化情况,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、(1)(2)【解析】(1)化简函数解析式为,再利用余弦函数的性质求函数的值域即可;(2)由已知得,利用同角之间的关系求得,再利用凑角公式及两角差的余弦公式即可得解.【小问1详解】,,利用余弦函数的性质知,则【小问2详解】,又,,则则12、【解析】参变分离可得,令,构造函数,利用导数求解函数单调性,分析可得的值域为,即得解【详解】由题意,,故又,,令故,令,故在单调递增由于时故的值域为故,即实数的取值范围为故答案为:13、π(答案不唯一)【解析】利用,可得,又,确定可得结果.【详解】因为,所以,,则,或,,又,故满足要求故答案为:π(答案不唯一)14、-8【解析】答案:-8.解析:根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该角为第四象限角.15、【解析】利用求得的值.【详解】由已知得,即,解得.故答案为:【点睛】本小题主要考查函数零点问题,属于基础题.16、【解析】由得:,∵在区间上随机取实数,每个数被取到的可能性相等,∴事件发生的概率为,故答案为考点:几何概型三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)首先求出集合,再对与两种情况讨论,分别得到不等式,解得即可;(2)依题意可得集合,分与两种情况讨论,分别到不等式,解得即可;【小问1详解】解:由得解,所以,又若,分类讨论:当,即解得,满足题意;当,即,解得时,若满足,则必有或;解得.综上,若,则实数t的取值范围为.【小问2详解】解:由“”是“”的必要不充分条件,则集合,若,即,解得,若,即,即,则必有,解得,综上可得,,综上所述,当“”是“”的必要不充分条件时,即为所求18、(1)x+y-2=0;(2)(-2,-1)【解析】(1)由题意得直线的斜率为,∴直线的方程为,即.(2)设点,由题意得解得∴点的坐标为.19、(1)证明见解析;(2)或【解析】(1)先设,然后利用作差法比较与的大小即可判断,(2)当时,,然后结合分式不等式可求,再设,根据已知可求,然后再求解不等式【详解】解:(1)是定义在上偶函数,且当时,,设,则,所以,所以在上单调递增,(2)当时,,整理得,,解得或(舍,设,则,,整理得,,解得,(舍或,综上或故不等式的解集或20、(1);(2)【解析】(1)由题意列出不等式组,令,求出对称轴,若在区间上有解,则解不等式即可求得k的范围;(2)由韦达定理计算得,利用指数函数单调性解不等式,化简得,令,求出函数在区间上的值域从而求得m的取值范围.【详解】(1)由题意知有解,则有解,①③成立时,②显然成立,因此令,对称轴为:当时,在区间上单调递减,在区间上单调递增,因此若在区间上有解,则,解得,又,则,k得最小值为;(2)由题意知是方程的两根,则,,联立解得,解得,所以在定义域内单调递减,由可得对任意的恒成立,化简得,令,,对成立,所以在区间上单调递减,,所以【点睛】本题考查函数与方程,二次函数的图像与性质,考查韦达定理,求解指数型不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度甲乙双方合作开展教育培训机构的合同2篇
- 2024年度员工培训与人才交流协议3篇
- 绿化服务协议
- 风电场建设施工劳务分包合同
- 熟食卤味摊转让协议
- 教师与家长沟通技巧培训
- 2024版电力设施高空作业安全许可协议书2篇
- 蝉古诗课件教学课件
- 《swot分析模板》课件
- 《RAID技术资料》课件
- 19《我们的大脑》(说课稿)2024-2025学年苏教版(2017)科学五年级上册
- 大学生职业规划大赛成长赛道
- 刘润年度演讲2024
- 2024年高考英语试题(新高考Ⅱ卷) 含解析
- 学校突发事件应急流程
- 燃气经营安全重大隐患判定标准课件
- 2024年中储粮集团招聘笔试参考题库附带答案详解
- 野生动物管理学知到章节答案智慧树2023年东北林业大学
- 宪法基本知识-课件
- 三宝、四口、五临边安全培训PPT课件
- 人教版九年级上册数学《直线和圆的位置关系》导学案
评论
0/150
提交评论