凉山市重点中学2025届数学高一上期末达标检测试题含解析_第1页
凉山市重点中学2025届数学高一上期末达标检测试题含解析_第2页
凉山市重点中学2025届数学高一上期末达标检测试题含解析_第3页
凉山市重点中学2025届数学高一上期末达标检测试题含解析_第4页
凉山市重点中学2025届数学高一上期末达标检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

凉山市重点中学2025届数学高一上期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则()A.当且仅当时,有最小值为B.当且仅当时,有最小值为C.当且仅当时,有最大值为D.当且仅当时,有最大值为2.已知集合,下列结论成立是()A. B.C. D.3.若直线x+(1+m)y-2=0与直线mx+2y+4=0平行,则m的值是A.1 B.-2C.1或-2 D.4.下列说法正确的是A.棱柱被平面分成的两部分可以都是棱柱 B.底面是矩形的平行六面体是长方体C.棱柱的底面一定是平行四边形 D.棱锥的底面一定是三角形5.在边长为3的菱形中,,,则=()A. B.-1C. D.6.已知偶函数f(x)在区间单调递增,则满足的x取值范围是()A. B.C. D.7.若,则终边在()A.第一、三象限 B.第一、二象限C.第二、四象限 D.第三、四象限8.若函数是函数(且)的反函数,且,则()A. B.C. D.9.函数的单调递增区间是()A. B.C. D.10.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积可能等于A. B.C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.命题的否定是__________12.已知样本9,10,11,,的平均数是10,标准差是,则______,______.13.《九章算术》是中国古代的数学名著,其中《方田》一章涉及到了弧田面积的计算问题,如图所示,弧田是由弧AB和弦AB所围成的图中阴影部分若弧田所在圆的半径为1,圆心角为,则此弧田的面积为____________.14.已知,写出一个满足条件的的值:______15.已知函数则不等式的解集是_____________16.已知圆:,为圆上一点,、、,则的最大值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为二次函数,且(1)求的表达式;(2)设,其中,m为常数且,求函数的最值18.已知,且(1)求的值;(2)求的值19.已知函数是定义在上的奇函数,且.(1)求函数解析式;(2)判断函数在上的单调性,并用定义证明;(3)解关于的不等式:.20.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.若函数的图象关于点对称,且当时,.(1)求的值;(2)设函数.(i)证明函数的图象关于点对称;(ii)若对任意,总存在,使得成立,求的取值范围.21.已知函数,(其中)(1)求函数的值域;(2)如果函数在恰有10个零点,求最小正周期的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由基本不等式可得答案.【详解】因为,所以,当且仅当即时等号成立.故选:A.2、C【解析】利用集合的交、并、补运算进行判断.【详解】因为,所以,故A错;,故B错;,故D错.故选:C3、A【解析】分类讨论直线的斜率情况,然后根据两直线平行的充要条件求解即可得到所求【详解】①当时,两直线分别为和,此时两直线相交,不合题意②当时,两直线的斜率都存在,由直线平行可得,解得综上可得故选A【点睛】本题考查两直线平行的等价条件,解题的关键是将问题转化为对直线斜率存在性的讨论.也可利用以下结论求解:若,则且或且4、A【解析】对于B.底面是矩形的平行六面体,它的侧面不一定是矩形,故它也不一定是长方体,故B错;对于C.棱柱的底面是平面多边形,不一定是平行四边形,故C错;对于D.棱锥的底面是平面多边形,不一定是三角形,故D错;故选A考点:1.命题的真假;2.空间几何体的特征5、C【解析】运用向量的减法运算,表示向量,再运用向量的数量积运算,可得选项.【详解】.故选:C.【点睛】本题考查向量的加法、减法运算,向量的线性表示,向量的数量积运算,属于基础题.6、A【解析】由偶函数性质得函数在上的单调性,然后由单调性解不等式【详解】因为偶函数在区间上单调递增,所以在区间上单调递减,故越靠近轴,函数值越小,因为,所以,解得:.故选:A7、A【解析】分和讨论可得角的终边所在的象限.【详解】解:因为,所以当时,,其终边在第三象限;当时,,其终边在第一象限.综上,的终边在第一、三象限.故选:A.8、B【解析】由题意可得出,结合可得出的值,进而可求得函数的解析式.【详解】由于函数是函数(且)的反函数,则,则,解得,因此,.故选:B.9、B【解析】先求出函数的定义域,然后将复合函数分解为内、外函数,分别讨论内外函数的单调性,进而根据复合函数单调性“同增异减”的原则,得到函数y=log3(x2-2x)的单调递增区间【详解】函数y=log5(x2-2x)的定义域为(-∞,0)∪(2,+∞),令t=x2-2x,则y=log5t,∵y=log5t为增函数,t=x2-2x在(-∞,0)上为减函数,在(2,+∞)为增函数,∴函数y=log5(x2-2x)的单调递增区间为(2,+∞),故选B【点睛】本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调性,其中复合函数单调性“同增异减”是解答本题的关键10、C【解析】如果主视图是从垂直于正方体的面看过去,则其面积为1;如果斜对着正方体的某表面看,其面积就变大,最大时,(是正对着正方体某竖着的棱看),面积为以上表面的对角线为长,以棱长为宽的长方形,其面积为,可得主视图面积最小是1,最大是,故选C.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解析】根据存在量词的命题的否定为全称量词命题即可得解;【详解】解:因为命题“”为存在量词命题,其否定为全称量词命题为故答案为:12、①.20②.96【解析】先由平均数的公式列出x+y=20,然后根据方差的公式列方程,求出x和y的值即可求出xy的值.【详解】根据平均数及方差公式,可得:化简得:,,或则,故答案为:20;96【点睛】本题主要考查了平均数和方等概念,以及解方程组,属于容易题.13、【解析】根据题意所求面积,再根据扇形和三角形面积公式,进行求解即可.【详解】易知为等腰三角形,腰长为,底角为,,所以,弧田的面积即图中阴影部分面积,根据扇形面积及三角形面积可得:所以.故答案为:.14、(答案不唯一)【解析】利用,可得,,计算即可得出结果.【详解】因为,所以,则,或,故答案为:(答案不唯一)15、【解析】分和0的大小关系分别代入对应的解析式即可求解结论.【详解】∵函数,∴当,即时,,故;当,即时,,故;∴不等式的解集是:.故答案为:.16、53【解析】设,则,从而求出,再根据的取值范围,求出式子的最大值.【详解】设,因为为圆上一点,则,且,则(当且仅当时取得最大值),故答案为:53.【点睛】本题属于圆与距离的应用问题,主要考查代数式的最值求法.解决此类问题一是要将题设条件转化为相应代数式;二是要确定代数式中变量的取值范围.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2);【解析】(1)利用待定系数法可求的表达式;(2)利用换元法结合二次函数的单调性可求函数的最值【小问1详解】设,因为,所以整理的,故有,即,所以.【小问2详解】,设,故又,∵,所以,在为增函数,∴即时,;即时,18、(1);(2)【解析】(1)将条件化为,然后,可得答案;(2)由第一问可得,然后,解出即可.【详解】(1)因为,且,所以故又因为,所以,即,所以所以(2)由(1)知,又因为,所以.因为,,所以,即,解得或因为,所以,所以19、(1);(2)函数在上是增函数,证明见解析;(3).【解析】(1)根据奇函数的定义可求得的值,再结合已知条件可求得实数的值,由此可得出函数的解析式;(2)判断出函数在上是增函数,任取、且,作差,因式分解后判断的符号,即可证得结论成立;(3)由得,根据函数的单调性与定义域可得出关于实数的不等式组,由此可解得实数的取值范围.【小问1详解】解:因为函数是定义在上的奇函数,则,即,可得,则,所以,,则,因此,.【小问2详解】证明:函数在上是增函数,证明如下:任取、且,则,因为,则,,故,即.因此,函数在上是增函数.【小问3详解】解:因为函数是上的奇函数且为增函数,由得,由已知可得,解得.因此,不等式的解集为.20、(1);(2)(i)证明见解析;(ii).【解析】(1)根据题意∵为奇函数,∴,令x=1即可求出;(2)(i)验证为奇函数即可;(ii))求出在区间上的值域为A,记在区间上的值域为,则.由此问题转化为讨论f(x)的值域B,分,,三种情况讨论即可.【小问1详解】∵为奇函数,∴,得,则令,得.【小问2详解】(i),∵为奇函数,∴为奇函数,∴函数的图象关于点对称.(ii)在区间上单调递增,∴在区间上的值域为,记在区间上的值域为,由对,总,使得成立知,①当时,上单调递增,由对称性知,在上单调递增,∴在上单调递增,只需即可,得,∴满足题意;②当时,在上单调递减,在上单调递增,由对称性知,在上单调递增,在上单调递减,∴在上单调递减,在上单调递增,在上单调递减,∴或,当时,,,∴满足题意;③当时,在上单调递减,由对称性知,在上单调递减

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论