版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山西省朔州市怀仁县一中数学高二上期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“椭圆的离心率为”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件2.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把个面包分给个人,使每个人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为()A. B.C. D.3.已知双曲线的焦点为,,其渐近线上横坐标为的点满足,则()A. B.C.2 D.44.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分又不必要条件5.下列说法中正确的是()A.命题“若,则”的否命题是真命题;B.若为真命题,则为真命题;C.“”是“”的充分条件;D.若命题:“,”,则:“,”6.命题“若,则”的逆命题、否命题、逆否命题中是真命题的个数为()A.0个 B.1个C.2个 D.3个7.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为A. B.C. D.8.设是函数的导函数,的图象如图所示,则的解集是()A. B.C. D.9.在数列中,,则等于A. B.C. D.10.已知为偶函数,且当时,,其中为的导数,则不等式的解集为()A. B.C. D.11.直线经过两点,那么其斜率为()A. B.C. D.12.以轴为对称轴,顶点为坐标原点,焦点到准线的距离为4的抛物线方程是()A. B.C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.在下列三个问题中:①甲乙二人玩胜负游戏:每人一次抛掷两枚质地均匀的硬币,如果规定:同时出现正面或反面算甲胜,一个正面、一个反面算乙胜,那么这个游戏是公平的;②掷一枚骰子,估计事件“出现三点”的概率,当抛掷次数很大时,此事件发生的频率接近其概率;③如果气象预报1日—30日的下雨概率是,那么1日—30日中就有6天是下雨的;其中,正确的是___________.(用序号表示)14.椭圆的右焦点是,两点是椭圆的左顶点和上顶点,若△是直角三角形,则椭圆的离心率是________.15.已知一个四面体的每个顶点都在表面积为的球的表面上,且,,则__________16.椭圆与双曲线有公共焦点,设椭圆与双曲线在第一象限内交于点,椭圆与双曲线的离心率分别为为坐标原点,,则的取值范围是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如表:零件的个数x(个)2345加工的时间y(小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图.(2)求出y关于x的线性回归方程,试预测加工10个零件需要多少小时?(注:,)18.(12分)已知函数,其中常数,(1)求单调区间;(2)若且对任意,都有,证明:方程有且只有两个实根19.(12分)三棱锥各棱长为2,E为AC边上中点(1)证明:面BDE;(2)求二面角的正弦值20.(12分)已知△ABC的内角A,B,C的对边分别是a,b,c,且.(1)求角C的大小;(2)若,求△ABC面积的最大值.21.(12分)已知正项等比数列的前项和为,满足,.记.(1)求数列的通项公式;(2)设数列前项和,求使得不等式成立的的最小值.22.(10分)设数列的前项和为,且.(1)求数列的通项公式;(2)记,数列的前项和为,求不等式的解集.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】讨论椭圆焦点的位置,根据离心率分别求出参数m,由充分必要性的定义判断条件间的充分、必要关系.【详解】当椭圆的焦点在轴上时,,得;当椭圆的焦点在轴上时,,得故“椭圆的离心率为”是“”的必要不充分条件故选:C.2、A【解析】设5人分到的面包数量从小到大记为,设公差为,可得,,求出,根据等差数列的通项公式,得到关于关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为,设公差为,依题意可得,,,,解得,.故选:A.【点睛】本题以数学文化为背景,考查等差数列的前项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.3、B【解析】由题意可设,则,再由,可得,从而可求出的值【详解】解:双曲线的渐近线方程为,故设,设,则,因为,所以,即,所以,因为,所以,因为,所以,故选:B4、B【解析】根据充分条件和必要条件的定义判断即可求解.【详解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分条件,故选:B.5、C【解析】A.写出原命题的否命题,即可判断其正误;B.根据为真命题可知的p,q真假情况,由此判断的真假;C.看命题“”能否推出“”,即可判断;D.根据含有一个量词的命题的否定的要求,即可判断该命题的正误.【详解】A.命题“若x=y,则sinx=siny”,其否命题为若“,则”为假命题,因此A不正确;B.命题“”为真命题,则p,q中至少有一个为真命题,当二者为一真一假时,为假命题,故B不正确C.命题“若,则”为真命题,故C正确;D.命题:“,”,为特称命题,其命题的否定:“,”,故D错误,故选:C6、B【解析】先判断出原命题和逆命题的真假,进而根据互为逆否的两个命题同真或同假最终得到答案.【详解】“若a=0,则ab=0”,命题为真,则其逆否命题也为真;逆命题为:“若ab=0,则a=0”,显然a=1,b=0时满足ab=0,但a≠0,即逆命题为假,则否命题也为假.故选:B.7、A【解析】根据题意可求出正方体的上底面与球相交所得截面圆的半径为4cm,再根据截面圆半径,球的半径以及球心距的关系,即可求出球的半径,从而得到球的体积【详解】设球的半径为cm,根据已知条件知,正方体的上底面与球相交所得截面圆的半径为4cm,球心到截面圆的距离为cm,所以由,得,所以球的体积为故选:A【点睛】本题主要考查球的体积公式的应用,以及球的结构特征的应用,属于基础题8、C【解析】先由图像分析出的正负,直接解不等式即可得到答案.【详解】由函数的图象可知,在区间上单调递减,在区间(0,2)上单调递增,即当时,;当x∈(0,2)时,.因为可化为或,解得:0<x<2或x<0,所以不等式的解集为.故选:C9、D【解析】分析:已知逐一求解详解:已知逐一求解.故选D点睛:对于含有的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律10、A【解析】根据已知不等式和要求解的不等式特征,构造函数,将问题转化为解不等式.通过已知条件研究g(x)的奇偶性和单调性即可解该不等式.【详解】令,则根据题意可知,,∴g(x)是奇函数,∵,∴当时,,单调递减,∵g(x)是奇函数,g(0)=0,∴g(x)在R上单调递减,由不等式得,.故选:A.11、B【解析】由两点的斜率公式可得答案.【详解】直线经过两点,则故选:B12、C【解析】根据抛物线的概念以及几何性质即可求抛物线的标准方程.【详解】依题意设抛物线方程为因为焦点到准线的距离为4,所以,所以,所以抛物线方程或故选:C二、填空题:本题共4小题,每小题5分,共20分。13、①②【解析】以甲乙获胜概率是否均为来判断游戏是否公平,并以此来判断①的正确性;以频率和概率的关系来判断②③的正确性.【详解】①中:甲乙二人玩胜负游戏:每人一次抛掷两枚质地均匀的硬币,可得4种可能的结果:(正,正),(正,反),(反,正),(反,反)则“同时出现正面或反面”的概率为,“一个正面、一个反面”的概率为即甲乙二人获胜的概率均为,那么这个游戏是公平的.判断正确;②中:“掷一枚骰子出现三点”是一个随机事件,当抛掷次数很大时,此事件发生的频率会稳定于其概率值,故此事件发生的频率接近其概率.判断正确;③中:气象预报1日—30日的下雨概率是,那么1日—30日每天下雨的概率均是,每天都有可能下雨也可能不下雨,故1日—30日中出现下雨的天数是随机的,可能是0天,也可能是1天、2天、3天……,不一定是6天.判断错误.故答案为:①②14、【解析】由题设易知,应用斜率的两点式及椭圆参数关系可得,进而求椭圆离心率.【详解】由题设,,,,又△是直角三角形,显然,所以,可得,则,解得,又,所以.故答案为:.15、【解析】由题意可得,该四面体的四个顶点位于一个长方体的四个顶点上,设长方体的长宽高为,由题意可得:,据此可得:,则球的表面积:,结合解得:.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.16、【解析】根据椭圆和双曲线得定义求得,再根据,可得,从而有,求出的范围,根据,结合基本不等式即可得出答案.【详解】解:设,则有,所以,即,又因为,所以,所以,即,则,由,得,所以,所以,则,由,得,因为,当且仅当,即时,取等号,因为,所以,所以,即,所以的取值范围是.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2),预测加工10个零件大约需要8.05小时【解析】(1)由题意描点作出散点图;(2)根据题中的公式分别求和,即得,令代入求出的值即可.【详解】(1)散点图(2),,,∴,,∴回归直线方程:,令,得,∴预测加工10个零件大约需要8.05小时.【点睛】本题主要考查了散点图,利用最小二乘法求线性回归方程,考查了学生基本作图能力和运算求解能力.18、(1)答案不唯一,具体见解析(2)证明见解析【解析】(1)求出函数的导数,谈论参数的范围,根据导数的正负,可得单调区间;(2)由已知可解得,构造函数,再根据(1)的结论,可知函数的单调性,结合零点存在定理,可证明结论.【小问1详解】定义域为,因为,若,,所以单调递减区间为,若,,当时,,当时,,所以单调递减区间为,单调递增区间为【小问2详解】证明:若且对任意,都有,则在处取得最小值,由(1)得在取得最小值,得,令,则单调性相同,单调递减区间为,单调递增区间为,且,,,所以在(1e2,所以在和各有且仅有一个零点,即方程有且只有两个实根19、(1)证明见解析(2)【解析】(1)根据线面垂直的判定定理即可证明;(2)建立如图所示坐标系,则,易知平面BCD的法向量,利用空间向量法求出面BDE的法向量,结合向量的数量积计算即可得出结果.【小问1详解】正四面体中各面分别是正三角形,E为AC边上中点,,又平面,且,所以面BDE【小问2详解】建立如图所示坐标系,于是,,,,,易知平面BCD的法向量设面BDE的法向量,于是,令,则,,所以,所以,得所以二面角的正弦值为.20、(1)(2)【解析】(1)对,利用正弦定理和诱导公式整理化简得到,即可求出;(2)先由正弦定理求出c,再由余弦定理和基本不等式求出ab的最大值为1,代入面积公式求面积.【小问1详解】对于.由正弦定理知:即.所以.所以.所以因为,,所以.所以.因为,所以.【小问2详解】因为,由正弦定理知:.由余弦定理知:,所以.当且仅当时,等号成立,所以ab的最大值为1.所以,即面积的最大值为.21、(1),.(2)5.【解析】(1)根据数列的递推公式探求出其项间关系,由此求出的公比,进而求得,的通项公式.(2)利用(1)的结论结合错位相减法求出,再将不等式变形,经推理计算得解.【小问1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 股东对赌协议
- 婚内财产只归女方协议书范本
- 财务会计实习报告范文
- 部门kpi报告范文
- 2024年度高速公路交通事故应急预案合同2篇
- 《防静电知识讲座》课件
- 基于二零二四年度的版权运营合同
- 土地承包经营权转让合同
- 2024版租赁合同(办公场所)2篇
- 《工程构造》课件
- 建设新型能源体系提高能源资源安全保障能力
- 2025年蛇年年度营销日历营销建议【2025营销日历】
- 形势与政策(吉林大学)智慧树知到答案2024年吉林大学
- 24秋国家开放大学《会计信息系统(本)》测试题参考答案
- 企业所得税汇算清缴申报表电子表格版(带公式-自动计算)
- 人教版九年级英语上册阅读理解10篇(含答案)
- 施耐德ATS互投柜说明书WTSA、B控制器说明书
- 《思想道德与法治》课件第四章明确价值要求践行价值准则第三节积极践行社会主义核心价值观
- 中空玻璃质量检验规范[学习经验]
- 糖类生物化学
- 《守株待兔》课本剧剧本
评论
0/150
提交评论