黑龙江省虎林市东方红林业局中学2025届高二上数学期末学业质量监测模拟试题含解析_第1页
黑龙江省虎林市东方红林业局中学2025届高二上数学期末学业质量监测模拟试题含解析_第2页
黑龙江省虎林市东方红林业局中学2025届高二上数学期末学业质量监测模拟试题含解析_第3页
黑龙江省虎林市东方红林业局中学2025届高二上数学期末学业质量监测模拟试题含解析_第4页
黑龙江省虎林市东方红林业局中学2025届高二上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省虎林市东方红林业局中学2025届高二上数学期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的导函数满足,则()A. B.C.3 D.42.直线的倾斜角为()A.150° B.120°C.60° D.30°3.(2017新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A. B.C. D.4.已知直线与直线平行,则实数a值为()A.1 B.C.1或 D.5.如图,四棱锥的底面是矩形,设,,,是棱上一点,且,则()A. B.C. D.6.若变量x,y满足约束条件,则目标函数最大值为()A.1 B.-5C.-2 D.-77.已知实数,满足,则的最大值为()A. B.C. D.8.在区间内随机取一个数x,则使得的概率为()A. B.C. D.9.已知等比数列中,,,则该数列的公比为()A. B.C. D.10.函数极小值为()A. B.C. D.11.窗花是贴在窗纸或窗户玻璃上的剪纸,是古老的传统民间艺术之一.如图是一个窗花的图案,以正六边形各顶点为圆心、边长为半径作圆,阴影部分为其公共部分.现从该正六边形中任取一点,则此点取自于阴影部分的概率为()A. B.C. D.12.直线经过两点,那么其斜率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若两定点A,B的距离为3,动点M满足,则M点的轨迹围成区域的面积为_________14.设、为正数,若,则的最小值是______,此时______.15.希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点A,B的距离之比为定值λ(λ≠1)的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy中,A(-2,1),B(-2,4),点P是满足的阿氏圆上的任一点,则该阿氏圆的方程为___________________;若点Q为抛物线E:y2=4x上的动点,Q在直线x=-1上的射影为H,则的最小值为___________.16.设函数(1)求的最小正周期和的最大值;(2)已知锐角的内角A,B,C对应的边分别为a,b,c,若,且,求的面积.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,点到两点、的距离之和等于,设点的轨迹为,直线与交于、两点(1)求曲线的方程;(2)若,求的值18.(12分)已知数列,若_________________(1)求数列的通项公式;(2)求数列的前项和从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解①;②,,;③,点,在斜率是2的直线上19.(12分)已知O为坐标原点,双曲线C:(,)的离心率为,点P在双曲线C上,点,分别为双曲线C的左右焦点,.(1)求双曲线C的标准方程;(2)已知点,,设直线PA,PB的斜率分别为,.证明:为定值.20.(12分)已知椭圆的焦距为4,点在G上.(1)求椭圆G的方程;(2)过椭圆G右焦点的直线l与椭圆G交于M,N两点,O为坐标原点,若,求直线l的方程.21.(12分)设函数(I)求曲线在点处的切线方程;(II)设,若函数有三个不同零点,求c的取值范围22.(10分)某外语学校的一个社团中有7名同学,其中2人只会法语;2人只会英语,3人既会法语又会英语,现选派3人到法国的学校交流访问(1)在选派的3人中恰有2人会法语的概率;(2)在选派的3人中既会法语又会英语的人数X的分布列和数学期望

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先对函数求导,再由,可求出的关系式,然后求【详解】由,得,因为,所以,所以,故选:C2、D【解析】由斜率得倾斜角【详解】直线的斜率为,所以倾斜角为30°.故选:D3、B【解析】绘制圆柱的轴截面如图所示,由题意可得:,结合勾股定理,底面半径,由圆柱的体积公式,可得圆柱的体积是,故选B.【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.4、A【解析】根据两直线平行的条件列方程,化简求得,检验后确定正确答案.【详解】由于直线与直线平行,所以,或,当时,两直线方程都为,即两直线重合,所以不符合题意.经检验可知符合题意.故选:A5、B【解析】根据空间向量基本定理求解【详解】由已知故选:B6、A【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可【详解】解:由得作出不等式组对应的平面区域如图(阴影部分平移直线,由图象可知当直线,过点时取得最大值,由,解得,所以代入目标函数,得,故选:A7、A【解析】画出不等式组所表示的平面区域,利用直线的斜率公式模型进行求解即可.【详解】不等式组表示的平面区域如下图所示:,代数式表示不等式组所表示的平面区域内的点与点连线的斜率,由图象可知:直线的斜率最大,由,即,即的最大值为:,因此的最大值为,故选:A8、A【解析】解一元一次不等式求不等式在上解集,再利用几何概型的长度模型求概率即可.【详解】由,可得,其中长度为1,而区间长度为4,所以,所求概率为故选:A.9、C【解析】设等比数列的公比为,可得出,即可得解.【详解】设等比数列的公比为,可得出.故选:C.10、A【解析】利用导数分析函数的单调性,可求得该函数的极小值.【详解】对函数求导得,令,可得或,列表如下:减极小值增极大值减所以,函数的极小值为.故选:A.11、D【解析】求得阴影部分的面积,结合几何概型概率计算公式,计算出所求的概率.【详解】设正六边形的边长为,则其面积为.阴影部分面积为,故所求概率为.故选:D12、B【解析】由两点的斜率公式可得答案.【详解】直线经过两点,则故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立如图直角坐标系,设点,根据题意和两点坐标求距离公式可得,结合圆的面积公式计算即可.【详解】以点A为坐标原点,射线AB为x轴的非负半轴建立直角坐标系,如图,设点,则,由,化简并整理得:,于是得点M轨迹是以点为圆心,2为半径的圆,其面积为,所以M点的轨迹围成区域的面积为.故答案为:14、①.4②.【解析】巧用“1”改变目标式子的结果,借助均值不等式求最值即可.【详解】,当且仅当即,时等号成立.故答案为,【点睛】本题考查最值的求法,注意运用“1”的代换法和基本不等式,考查运算能力,属于中档题15、①.②.【解析】(1)利用直译法直接求出P点的轨迹(2)先利用阿氏圆的定义将转化为P点到另一个定点的距离,然后结合抛物线的定义容易求得的最小值【详解】设P(x,y),由阿氏圆的定义可得即化简得则设则由抛物线的定义可得当且仅当四点共线时取等号,的最小值为故答案为:【点睛】本题考查了抛物线的定义及几何性质,同时考查了阿氏圆定义的应用.还考查了学生利用转化思想、方程思想等思想方法解题的能力.难度较大16、(1)的最小正周期为,的最大值为1(2)【解析】(1)直接根据的表达式和正弦函数的性质可得到的最小正周期和最大值;(2)先根据求得角的大小为,然后在中利用余弦定理求得,最后根据三角形的面积公式即可【小问1详解】已知则的最小正周期为:则的最大值为:【小问2详解】由可得:()或()又为锐角,则可得:.在中,由余弦定理可得:,即又,解得:则的面积为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)本题可根据椭圆的定义求出点的轨迹;(2)本题首先可设、,然后联立椭圆与直线方程,通过韦达定理得出、,最后通过得出,代入、的值并计算,即可得出结果.【详解】(1)因为点到两点、的距离之和等于,所以结合椭圆定义易知,点的轨迹是以点、为焦点且的椭圆,则,,,点的轨迹.(2)设,,联立,整理得,则,,因为,所以,即,整理得,则,整理得,解得.【点睛】关键点点睛:本题考查根据椭圆定义求动点轨迹以及直线与抛物线相关问题的求解,椭圆的定义为动点到两个定点的距离为一个固定的常数,考查韦达定理的应用,考查计算能力,是难题.18、答案见解析.【解析】(1)若选①,根据通项公式与前项和的关系求解通项公式即可;若选②,根据可得数列为等差数列,利用基本量法求解通项公式即可;若选③,根据两点间的斜率公式可得,可得数列为等差数列进而求得通项公式;(2)利用裂项相消求和即可【详解】解:(1)若选①,由,所以当,,两式相减可得:,而在中,令可得:,符合上式,故若选②,由(,)可得:数列为等差数列,又因为,,所以,即,所以若选③,由点,在斜率是2的直线上得:,即,所以数列为等差数列且(2)由(1)知:,所以19、(1)(2)证明见解析【解析】(1)根据题意和双曲线的定义求出,结合离心率求出b,即可得出双曲线的标准方程;(2)设,根据两点的坐标即可求出、,化简计算即可.【小问1详解】由题知:由双曲线的定义知:,又因为,所以,所以所以,双曲线C的标准方程为小问2详解】设,则因为,,所以,所以20、(1);(2).【解析】(1)根据已知求出即得椭圆的方程;(2)设l的方程为,,,联立直线和椭圆的方程得到韦达定理,根据得到,即得直线l的方程.【小问1详解】解:椭圆的焦距是4,所以焦点坐标是,.因为点在G上,所以,所以,.所以椭圆G的方程是.【小问2详解】解:显然直线l不垂直于x轴,可设l的方程为,,,将直线l的方程代入椭圆G的方程,得,则,.因为,所以,则,即,由,得,.所以,解得,即,所以直线l的方程为.21、(1)(2)【解析】(1)由导数几何意义得切线斜率为,再根据点斜式写切线方程;(2)由函数图像可知,极大值大于零且极小值小于零,解不等式可得c的取值范围试题解析:解:(I)由,得因为,,所以曲线在点处的切线方程为(II)当时,,所以令,得,解得或与在区间上的情况如下:所以,当且时,存在,,,使得由的单调性知,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论