版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南南阳市第一中学校2025届高一数学第一学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,,则集合A. B.C. D.2.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.“”是“”成立的条件A.充分不必要 B.必要不充分C.充分必要 D.既不充分又不必要4.下列四个集合中,是空集的是()A. B.C. D.5.在中,角、、的对边分别为、、,已知,,,则A. B.C. D.6.已知,则的最小值是()A.5 B.6C.7 D.87.已知函数(ω>0),对任意x∈R,都有≤,并且在区间上不单调,则ω的最小值是()A.6 B.7C.8 D.98.若函数则下列说法错误的是()A.是奇函数B.若在定义域上单调递减,则或C.当时,若,则D.若函数有2个零点,则9.函数的零点一定位于下列哪个区间().A. B.C. D.10.已知在海中一孤岛的周围有两个观察站,且观察站在岛的正北5海里处,观察站在岛的正西方.现在海面上有一船,在点测得其在南偏西60°方向相距4海里处,在点测得其在北偏西30°方向,则两个观察站与的距离为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设函数;若方程有且仅有1个实数根,则实数b的取值范围是__________12.已知关于的不等式的解集为,其中,则的最小值是___________.13.设函数,若关于x的方程有且仅有6个不同的实根.则实数a的取值范围是_______.14.计算:______15.若关于的不等式的解集为,则实数__________16.函数为奇函数,且对任意互不相等的,,都有成立,且,则的解集为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.有一批材料,可以建成长为240米的围墙.如图,如果用材料在一面靠墙的地方围成一块矩形的场地,中间用同样材料隔成三个相等面积的矩形,怎样围法才可取得最大的面积?并求此面积.18.已知角的终边经过点(1)求值;(2)求的值19.求函数在区间上的最大值和最小值.20.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为的水车,当水车上水斗A从水中浮现时开始计算时间,点A沿圆周按逆时针方向匀速旋转,且旋转一周用时60秒,经过秒后,水斗旋转到点,已知,设点的坐标为,其纵坐标满足(1)求函数的解析式;(2)当水车转动一圈时,求点到水面的距离不低于的持续时间21.函数的定义域为,定义域为.(1)求;(2)若,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用一元二次方程的解法化简集合化简集合,利用并集的定义求解即可.【详解】由一元二次方程的解法化简集合,或,,或,故选B.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合.2、A【解析】根据终边相同的角的三角函数值相等,结合充分不必要条件的定义,即可得到答案;【详解】,当,“”是“”的充分不必要条件,故选:A3、B【解析】求出不等式的等价条件,结合不等式的关系以及充分条件和必要条件的定义进行判断即可【详解】由不等式“”,解得,则“”是“”成立的必要不充分条件即“”是“”成立的必要不充分条件,故选B【点睛】本题主要考查了充分条件和必要条件的判断,其中解答中结合不等式的关系是解决本题的关键,着重考查了推理与判断能力,属于基础题.4、D【解析】对每个集合进行逐一检验,研究集合内的元素是否存在即可选出.【详解】选项A,;选项B,;选项C,;选项D,,方程无解,.选:D.5、B【解析】分析:直接利用余弦定理求cosA.详解:由余弦定理得cosA=故答案为B.点睛:(1)本题主要考查余弦定理在解三角形中的应用,意在考查学生对余弦定理的掌握水平.(2)已知三边一般利用余弦定理:.6、C【解析】,根据结合基本不等式即可得出答案.【详解】解:,因为,又,所以,则,当且仅当,即时,取等号,即的最小值是7.故选:C7、B【解析】根据,得为函数的最大值,建立方程求出的值,利用函数的单调性进行判断即可【详解】解:对任意,都有,为函数的最大值,则,,得,,在区间,上不单调,,即,即,得,则当时,最小.故选:B.8、D【解析】A利用奇偶性定义判断;B根据函数的单调性,列出分段函数在分段区间的界点上函数值的不等关系求参数范围即可;C利用函数单调性求解集;D将问题转化为与直线的交点个数求参数a的范围.【详解】由题设,当时有,则;当时有,则,故是奇函数,A正确因为在定义域上单调递减,所以,得a≤-4或a≥-1,B正确当a≥-1时,在定义域上单调递减,由,得:x>-1且x≠0,C正确的零点个数即为与直线的交点个数,由题意得,解得-3<a<-5+172,D错误故选:D9、C【解析】根据零点存在性定理可得结果.【详解】因为函数的图象连续不断,且,,,,根据零点存在性定理可知函数的零点一定位于区间内.故选:C【点睛】关键点点睛:掌握零点存在性定理是解题关键.10、D【解析】画出如下示意图由题意可得,,又,所以A,B,C,D四点共圆,且AC为直径、在中,,由余弦定理得,∴∴(其中为圆的半径).选D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据分段函数的解析式作出函数图象,将方程有且仅有1个实数根转化为函数与直线有一个交点,然后数形结合即可求解.【详解】作出函数的图象,如图:结合图象可得:,故答案为:.12、【解析】根据一元二次不等式解集的性质,结合基本不等式、对钩函数的单调性进行求解即可.【详解】因为关于的不等式的解集为,所以是方程的两个不相等的实根,因此有,因为,所以,当且仅当时取等号,即时取等号,,设,因为函数在上单调递增,所以当时,函数单调递增,所以,故答案为:13、或或【解析】作出函数的图象,设,分关于有两个不同的实数根、,和两相等实数根进行讨论,当方程有两个相等的实数根时,再检验,当方程有两个不同的实数根、时,或,再由二次方程实数根的分布进行讨论求解即可.【详解】作出函数的简图如图,令,要使关于的方程有且仅有个不同的实根,(1)当方程有两个相等的实数根时,由,即,此时当,此时,此时由图可知方程有4个实数根,此时不满足.当,此时,此时由图可知方程有6个实数根,此时满足条件.(2)当方程有两个不同的实数根、时,则或当时,由可得则的根为由图可知当时,方程有2个实数根当时,方程有4个实数根,此时满足条件.当时,设由,则,即综上所述:满足条件的实数a的取值范围是或或故答案为:或或【点睛】关键点睛:本题考查利用复合型二次函数的零点个数求参数,考查数形结合思想的应用,解答本题的关键由条件结合函数的图象,分析方程的根情况及其范围,再由二次方程实数根的分布解决问题,属于难题.14、【解析】根据幂的运算法则,根式的定义计算【详解】故答案为:15、【解析】先由不等式的解得到对应方程的根,再利用韦达定理,结合解得参数a即可.【详解】关于的不等式的解集为,则方程的两根为,则,则由,得,即,故.故答案为:.16、【解析】由条件可得函数的单调性,结合,分和利用单调性可解.【详解】因为,时,,所以在上单调递减,又因为为奇函数,且,所以在上单调递减,且.当时,不等式,得;当时,不等式,得.综上,不等式的解集为.故答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、当面积相等的小矩形的长为时,矩形面积最大,【解析】设每个小矩形的长为,宽为,依题意可知,代入矩形的面积公式,根据基本不等式即可求得矩形面积的最大值.【详解】设每个小矩形的长为,宽为,依题意可知,,当且仅当取等号,所以时,.【点睛】本题主要考查函数最值的应用,考查了学生分析问题和解决问题的能力.18、(1),,;(2)【解析】(1)直接利用三角函数的坐标定义求解;(2)化简,即得解.【小问1详解】解:,有,,;【小问2详解】解:,将代入,可得19、最大值53,最小值4【解析】先化简,然后利用换元法令t=2x根据变量x的范围求出t的范围,将原函数转化成关于t的二次函数,最后根据二次函数的性质求在闭区间上的最值即可【详解】∵,令,,则,对称轴,则在上单调递减;在上单调递增.则,即时,;,即时,.【点睛】本题主要考查了函数的最值及其几何意义,以及利用换元法转化成二次函数求解值域的问题,属于基础题20、(1);(2)20秒.【解析】(1)根据OA求出R,根据周期T=60求出ω,根据f(0)=-2求出φ;(2)问题等价于求时t的间隔.小问1详解】由图可知:,周期,∵t=0时,在,∴,∴或,,,且,则.∴.【小问2详解】点到水面的距离等于时,y=2,故或,即,,∴当水车转动一圈时,求点到水面的距离不低于的持续时间20秒.21、(1);(2).【解析】(1)求函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园教师自我评价
- -ST工智:哈工成长(岳阳)私募股权基金企业(有限合伙)评估报告
- 在外贸公司实习报告3篇
- 文员实习工作总结(15篇)
- 美丽中国双碳有我初中作文5篇
- 成人毕业自我鉴定范文
- 公司会计个人辞职报告(汇编11篇)
- 大班语言教案及教学反思《聪明的乌龟》
- 债权抵消合同(2篇)
- 公共交通站台广告投放合同(2篇)
- 降低会阴侧切率的PDCA
- 《西医外科学》教学大纲:胆道感染及胆石病
- 私宅施工方案
- 提升国家语言能力的若干思考
- 四年级语文硬笔书法比赛方案
- 城镇污水处理文献综述
- 母乳喂养质量检查评分表
- GB/T 25283-2023矿产资源综合勘查评价规范
- 有效沟通:金字塔原则
- 酒店4D现场管理体系课件
- 大学计算机基础(山东农业大学)知到章节答案智慧树2023年
评论
0/150
提交评论