版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省重点中学2025届高一数学第一学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知幂函数的图象过,则下列求解正确的是()A. B.C. D.2.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P(单位:)与时间t(单位:h)间的关系为,其中,k是常数.已知当时,污染物含量降为过滤前的,那么()A. B.C. D.3.已知,若,则()A. B.C. D.4.在特定条件下,篮球赛中进攻球员投球后,篮球的运行轨迹是开口向下的抛物线的一部分.“盖帽”是一种常见的防守手段,防守队员在篮球上升阶段将球拦截即为“盖帽”,而防守队员在篮球下降阶段将球拦截则属“违规”.对于某次投篮而言,如果忽略其他因素的影响,篮球处于上升阶段的水平距离越长,则被“盖帽”的可能性越大.收集几次篮球比赛的数据之后,某球员投篮可以简化为下述数学模型:如图所示,该球员的投篮出手点为P,篮框中心点为Q,他可以选择让篮球在运行途中经过A,B,C,D四个点中的某一点并命中Q,忽略其他因素的影响,那么被“盖帽”的可能性最大的线路是()A.P→A→Q B.P→B→QC.P→C→Q D.P→D→Q5.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,其终边与单位圆相交于点,则()A. B.C. D.6.已知命题:,总有,则命题的否定为()A.,使得 B.,使得C.,总有 D.,总有7.若函数且,则该函数过的定点为()A. B.C. D.8.已知全集,集合,那么()A. B.C. D.9.下列各式中与相等的是A. B.C. D.10.过原点和直线与的交点的直线的方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的定义域为,当时,,若,则的解集为______12.______.13.若点P(1,﹣1)在圆x2+y2+x+y+k=0(k∈R)外,则实数k的取值范围为_____14.写出一个同时具有下列三个性质函数:________.①;②在上单调递增;③.15.设函数,其图象的一条对称轴在区间内,且的最小正周期大于,则的取值范围是____________16.若关于的方程的一个根在区间上,另一个根在区间上,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,,.(1)求,(2)若,求实数a的取值范围18.已知平面向量,,,且,.(1)求和:(2)若,,求向量与向量的夹角的大小.19.已知函数(1)若,求a的值;(2)判断函数的奇偶性,并证明你的结论;(3)若对于恒成立,求实数m的范围20.给定函数,,,用表示,中的较大者,记为.(1)求函数的解析式并画出其图象;(2)对于任意的,不等式恒成立,求实数的取值范围.21.已知函数,,(1)求的值;(2)求函数的单调递增区间;(3)求在区间上的最大值和最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用幂函数过的点求出幂函数的解析式即可逐项判断正误【详解】∵幂函数y=xα的图象过点(2,),∴2α,解得α,故f(x),即,故选A【点睛】本题考查了幂函数的定义,是一道基础题2、C【解析】根据题意列出指数式方程,利用指数与对数运算公式求出的值.【详解】由题意得:,即,两边取对数,,解得:.故选:C3、C【解析】设,求出,再由求出.【详解】设,因为所以,又,所以,所以.故选:C.4、B【解析】定性分析即可得到答案【详解】B、D两点,横坐标相同,而D点的纵坐标大于B点的纵坐标,显然,B点上升阶段的水平距离长;A、B两点,纵坐标相同,而A点的横坐标小于B点的横坐标,等经过A点的篮球运行到与B点横坐标相同时,显然在B点上方,故B点上升阶段的水平距离长;同理可知C点路线优于A点路线,综上:P→B→Q是被“盖帽”的可能性最大的线路.故选:B5、C【解析】由已知利用任意角的三角函数求得,再由二倍角的余弦公式求解即可【详解】解:因为角的终边与单位圆相交于点,则,故选:C6、B【解析】根据全称命题的否定性质进行判断即可.【详解】因为全称命题的否定是特称命题,所以命题的否定为,使得,故选:B7、D【解析】根据指数函数的图像经过定点坐标是,利用平移可得到答案.【详解】因为指数函数的图像经过定点坐标是,函数图像向右平移个单位,再向上平移个单位,得到,函数的图像过的定点.故选:.【点睛】本题主要考查的是指数函数的图像和性质,考查学生对指数函数的理解,是基础题.8、C【解析】应用集合的补运算求即可.【详解】∵,,∴.故选:C9、A【解析】利用二倍角公式及平方关系可得,结合三角函数的符号即可得到结果.【详解】,又2弧度在第二象限,故sin2>0,cos2<0,∴=故选A【点睛】本题考查三角函数的化简问题,涉及到二倍角公式,平方关系,三角函数值的符号,考查计算能力.10、C【解析】先求出两直线的交点,从而可得所求的直线方程.【详解】由可得,故过原点和交点的直线为即,故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解析】构造,可得在上单调递减.由,转化为,利用单调性可得答案【详解】由,得,令,则,又,所以在上单调递减由,得,因为,所以,所以,得故答案为:.12、2【解析】利用两角和的正切公式进行化简求值.【详解】由于,所以,即,所以故答案为:【点睛】本小题主要考查两角和的正切公式,属于中档题.13、【解析】首先把圆的一般方程化为标准方程,点在圆外,则圆心到直线的距离,从而得解.【详解】∵圆标准方程为,∴圆心坐标(,),半径r,若点(1,﹣1)在圆外,则满足k,且k>0,即﹣2<k,即实数k的取值范围是(﹣2,).故答案为:(﹣2,)【点睛】本题考查根据直线与圆的位置关系求参数的取值范围,属于基础题.14、或其他【解析】找出一个同时具有三个性质的函数即可.【详解】例如,是单调递增函数,,满足三个条件.故答案为:.(答案不唯一)15、【解析】由题可得,利用正弦函数的性质可得对称轴为,结合条件即得.【详解】∵,由,得,当时,,则,解得此时,当时,,则,解得此时,不合题意,当取其它整数时,不合题意,∴.故答案:.16、【解析】设,时,方程只有一个根,不合题意,时,方程的根,就是函数的零点,方程的一个根在区间上,另一个根在区间上,且只需,即,解得,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);;(2).【解析】(1)解不等式化简集合B,再利用交集、并集、补集的定义直接计算作答.(2)由已知可得,再利用集合的包含关系列式计算作答.【小问1详解】解得:,则,而,所以,或,.【小问2详解】,因,则,于是得,所以实数a的取值范围是.18、(1),;(2).【解析】(1)本题首先可根据、得出,然后通过计算即可得出结果;(2)本题首先可根据题意得出以及,然后求出、以及的值,最后根据向量的数量积公式即可得出结果.【详解】(1)因为,,,且,,所以,解得,故,.(2)因为,,所以,因为,,所以,,,,设与的夹角为,则,因为,所以,向量与向量的夹角为.【点睛】本题考查向量平行、向量垂直以及向量的数量积的相关性质,若、且,则,考查通过向量的数量积公式求向量的夹角,考查计算能力,是中档题.19、(1)(2)奇函数,证明见解析(3)【解析】(1)代入,得到,利用对数的运算即可求解;(2)先判断奇偶性,然后分析定义域并计算的数量关系,由此完成证明;(3)将已知转化为,求出在的最小值,即可得解.【小问1详解】,,即,解得,所以a的值为【小问2详解】为奇函数,证明如下:由,解得:或,所以定义域为关于原点对称,又,所以为奇函数;【小问3详解】因为,又外部函数为增函数,内部函数在上为增函数,由复合函数的单调性知函数在上为增函数,所以,又对于恒成立,所以,所以,所以实数的范围是20、(1),作图见解析;(2).【解析】(1)根据题意,分类讨论,结合一元二次不等式的解法进行求解并画出图象即可;(2)构造新函数,利用分类讨论思想,结合二次函数的性质进行求解即可.【小问1详解】①当即时,,则,②当即或时,,则,故图象如下:【小问2详解】由(1)得,当时,,则在上恒成立等价于在上恒成立.令,,原问题等价于在上的最小值.①当即时,在上单调递增,则,故.②当即时,在上单调递减,在上单调递增,则,由时,,故不合题意.综上所述,实数的取值范围为.21、(1)1;(2)(3)最大值为2,最小值为-1.【解析】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地龙课件教学课件
- 《女人与保险》课件
- 新员工团队建设活动方案
- 楼宇安全生产培训课件
- 六年级(上)期中语文试卷2
- 健康元宇宙课件
- 巡察业务知识培训讲座
- 图纸管理制度
- 大学体育与健康 教案 武术散打16
- 大学体育与健康 教案 体育舞蹈6
- 头痛的中医护理查房课件
- 校园防冲撞应急处突预案
- 学生体质健康管理制度
- 系统性红斑狼疮诊疗规范2023版
- JGJT341-2014 泡沫混凝土应用技术规程
- Unit+7+Grammar 牛津译林版英语九年级上册
- 华为财务管理(6版)-华为经营管理丛书
- 儿童危重症的早期识别
- 市政道路下穿隧道工程施工组织设计
- 医院管理学考试复习题及答案
- 2023年四川省绵阳市中考英语试卷真题(含答案)
评论
0/150
提交评论