版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆阿勒泰地区布尔津县高级中学2025届高一上数学期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则方程的实数根的个数为()A. B.C. D.2.下列函数中既是偶函数,又在上单调递增的是()A B.C. D.3.计算的值为A. B.C. D.4.如图,在平面四边形ABCD,,,,.若点E为边上的动点,则的取值范围为()A. B.C. D.5.若,,则角的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限6.下列有关命题的说法错误的是()A.的增区间为B.“”是“-4x+3=0”的充分不必要条件C.若集合中只有两个子集,则D.对于命题p:.存在,使得,则p:任意,均有7.函数的图象与函数的图象关于直线对称,则函数的单调递减区间为A. B.C. D.8.已知函数,则函数的零点所在的区间是A. B.C. D.9.《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其外形由圆柱和长方体组合而成.已知某组合体由圆柱和长方体组成,如图所示,圆柱的底面直径为1寸,长方体的长、宽、高分别为3.8寸,3寸,1寸,该组合体的体积约为12.6立方寸,若取3.14,则圆柱的母线长约为()A.0.38寸 B.1.15寸C.1.53寸 D.4.59寸10.“”是“”成立的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要二、填空题:本大题共6小题,每小题5分,共30分。11.命题“,”的否定是___________.12.化简_____13.如图是函数在一个周期内的图象,则其解析式是________14.若则______15.已知函数集合,若集合中有3个元素,则实数的取值范围为________16.函数是偶函数,且它的值域为,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.从某小学随机抽取100多学生,将他们的身高(单位:)数据绘制成频率分布直方图(如图).(1)求直方图中的值;(2)试估计该小学学生的平均身高;(3)若要从身高在三组内的学生中,用分层抽样的方法选取24人参加一项活动,则从身高在内的学生中选取的人数应为多少人?18.已知对数函数.(1)若函数,讨论函数的单调性;(2)对于(1)中的函数,若,不等式的解集非空,求实数的取值范围.19.在中,角的对边分别为,的面积为,已知,,(1)求值;(2)判断的形状并求△的面积20.已知全集,集合,,.(1)若,求;(2)若,求实数a的取值范围.21.已知函数图象的一条对称轴方程为,且其图象上相邻两个零点的距离为.(1)求的解析式;(2)若对,不等式恒成立,求实数m的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由已知,可令,要求,即为,原题转化为直线与的图象的交点情况,通过画出函数的图象,讨论的取值,即可直线与的图象的交点情况.【详解】令,则,①当时,,,,即,②当时,,,画出函数的图象,如图所示,若,即,无解;若,直线与的图象有3个交点,即有3个不同实根;若,直线与的图象有2个交点,即有2个不同实根;综上所述,方程的实数根的个数为5个,故选:2、C【解析】根据常见函数的单调性和奇偶性,即可容易判断选择.【详解】根据题意,依次分析选项:对于A,,奇函数,不符合题意;对于B,,为偶函数,在上单调递减,不符合题意;对于C,,既是偶函数,又在上单调递增,符合题意;对于D,为奇函数,不符合题意;故选:C.【点睛】本题考查常见函数单调性和奇偶性的判断,属简单题.3、D【解析】直接由二倍角的余弦公式,即可得解.【详解】由二倍角公式得:,故选D.【点睛】本题考查了二倍角的余弦公式,属于基础题.4、A【解析】由已知条件可得,设,则,由,展开后,利用二次函数性质求解即可.【详解】∵,因为,,,所以,连接,因为,所以≌,所以,所以,则,设,则,∴,,,,所以,因为,所以.故选:A5、B【解析】应用诱导公式可得,,进而判断角的终边所在象限.【详解】由题设,,,所以角的终边在第二象限.故选:B6、C【解析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程有一根判断;D.由命题p的否定为全称量词命题判断.【详解】A.令,由,解得,由二次函数的性质知:t在上递增,在上递减,又在上递增,由复合函数的单调性知:在上递增,故正确;B.当时,-4x+3=0成立,故充分,当-4x+3=0成立时,解得或,故不必要,故正确;C.若集合中只有两个子集,则集合只有一个元素,即方程有一根,当时,,当时,,解得,所以或,故错误;D.因为命题p:.存在,使得存在量词命题,则其否定为全称量词命题,即p任意,均有,故正确;故选:C7、D【解析】先由函数是函数的反函数,所以,再求得,再求函数的定义域,再结合复合函数的单调性求解即可.【详解】解:由题意函数的图象与函数的图象关于直线对称知,函数是函数的反函数,所以,即,要使函数有意义,则,即,解得,设,则函数在上单调递增,在上单调递减.因为函数在定义域上为增函数,所以由复合函数的单调性性质可知,则此函数的单调递减区间是,故选D【点睛】本题考查了函数的反函数的求法及复合函数的单调性,重点考查了函数的定义域,属中档题.8、A【解析】根据初等函数的性质得到函数的单调性,再由得答案【详解】∵函数和在上均为增函数,∴在上为单调增函数,∵,,∴函数的零点所在的区间是,故选A【点睛】本题主要考查了函数零点的判定,考查了初等函数的性质,属于基础题9、C【解析】先求出长方体的体积,进而求出圆柱的体积,利用求出的圆柱体体积和圆柱的底面半径为0.5寸,求出圆柱的母线长【详解】由题意得,长方体的体积为(立方寸),故圆柱的体积为(立方寸).设圆柱的母线长为l,则由圆柱的底面半径为0.5寸,得,计算得:(寸).故选:C10、B【解析】通过和同号可得前者等价于或,通过对数的性质可得后者等价于或,结合充分条件,必要条件的概念可得结果.【详解】或,或,即“”是“”成立必要不充分条件,故选:B.【点睛】本题主要考查了不等式的性质以及充分条件,必要条件的判定,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、“,”【解析】直接利用全称命题的否定是特称命题写出结果即可【详解】因为全称命题的否定为特称命题,故命题“,”的否定为:“,”故答案为:“,”12、-2【解析】利用余弦的二倍角公式和正切的商数关系可得答案.【详解】.故答案为:.13、【解析】由图可得;,则;由五点作图法可得,解得,所以其解析式为考点:1.三角函数的图像;2.五点作图法;14、【解析】15、或【解析】令,记的两根为,由题知的图象与直线共有三个交点,从而转化为一元二次方程根的分布问题,然后可解.【详解】令,记的零点为,因为集合中有3个元素,所以的图象与直线共有三个交点,则,或或当时,得,,满足题意;当时,得,,满足题意;当时,,解得.综上,t的取值范围为或.故答案为:或16、【解析】展开,由是偶函数得到或,分别讨论和时的值域,确定,的值,求出结果.【详解】解:为偶函数,所以,即或,当时,值域不符合,所以不成立;当时,,若值域为,则,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)4人【解析】(1)根据频率和为1,求出的值;(2)根据频率分布直方图,计算平均数即可(3)根据分层抽样方法特点,计算出总人数以及应抽取的人数比即可;【小问1详解】解:因为直方图中的各个矩形的面积之和为1,所以有,解得;【小问2详解】解:根据频率分布直方图,计算平均数为【小问3详解】解:由直方图知,三个区域内的学生总数为人,其中身高在内的学生人数为人,所以从身高在范围内抽取的学生人数为人;18、(1)详见解析;(2).【解析】(1)由对数函数的定义,得到的值,进而得到函数的解析式,再根据复合函数的单调性,即可求解函数的单调性.(2)不等式的解集非空,得,利用函数的单调性,求得函数的最小值,即可求得实数的取值范围.【详解】(1)由题中可知:,解得:,所以函数的解析式,∵,∴,∴,即的定义域为,由于,令则:由对称轴可知,在单调递增,在单调递减;又因为在单调递增,故单调递增区间,单调递减区间为.(2)不等式的解集非空,所以,由(1)知,当时,函数单调递增区间,单调递减区间为,又,所以,所以,,所以实数的取值范围.19、(1);(2)是等腰三角形,其面积为【解析】(1)由结合正弦面积公式及余弦定理得到,进而得到结果;(2)由结合内角和定理可得分两类讨论即可.试题解析:(1),由余弦定理得,(2)即或(ⅰ)当时,由第(1)问知,是等腰三角形,(ⅱ)当时,由第(1)问知,又,矛盾,舍.综上是等腰三角形,其面积为点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.20、(1)(2)【解析】(1)时,分别求出集合,,,再根据集合的运算求得答案;(2)根据,列出相应的不等式组,解得答案.【小问1详解】当时,,,所以,故.【小问2详解】因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北省衡水市武强中学2024-2025学年高一上学期期中考试数学试题(含答案)
- 2024年度云南省高校教师资格证之高等教育学自我检测试卷A卷附答案
- 数据中心建设方案
- 赣南师范大学《三维动画制作》2022-2023学年第一学期期末试卷
- 阜阳师范大学《通信工程专业导论》2021-2022学年第一学期期末试卷
- 人教版小学四年级体育教案上册
- 福建师范大学《通信一》2021-2022学年第一学期期末试卷
- 福建师范大学《民事诉讼法》2023-2024学年第一学期期末试卷
- 档案利用效果登记表
- 2024年嘉峪关客运从业资格证考试模拟试题
- T-CPQS C010-2024 鉴赏收藏用潮流玩偶及类似用途产品
- 罗兰贝格-正泰集团品牌战略项目-品牌战略设计与高阶落地建议报告-20180627a
- 2024砍伐树木合同书
- 2024成都中考数学二轮重点专题研究 实数的相关概念(课件)
- 道路开口施工方案6
- 国开作业《公共关系学》实训项目1:公关三要素分析(六选一)参考552
- 大学劳动教育(高等院校劳动教育课程)全套教学课件
- 人教版七级下《第五章相交线与平行线》单元测试题含试卷分析答题技巧
- 二年级上册语文第四单元《日月潭》教学课件 第1课时
- MOOC 英语语法与写作-暨南大学 中国大学慕课答案
- 妇科腹腔镜手术术前宣教
评论
0/150
提交评论