版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省宝鸡市渭滨区2025届高二数学第一学期期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆的()A.焦点在x轴上,长轴长为2 B.焦点在y轴上,长轴长为2C.焦点在x轴上,长轴长为 D.焦点在y轴上,长轴长为2.已知等差数列为其前项和,且,且,则()A.36 B.117C. D.133.已知命题,则为()A. B.C. D.4.已知方程表示的曲线是焦点在轴上的椭圆,则的取值范围A. B.C. D.5.已知向量,,且,,,则一定共线的三点是()A.A,B,D B.A,B,CC.B,C,D D.A,C,D6.如图,已知多面体,其中是边长为4的等边三角形,四边形是矩形,,平面平面,则点到平面的距离是()A. B.C. D.7.运行如图所示程序后,输出的结果为()A.15 B.17C.19 D.218.一个几何体的三视图都是半径为1的圆,在该几何体内放置一个高度为1的长方体,则长方体的体积最大值为()A. B.C. D.19.我国古代数学典籍《四元玉鉴》中有如下一段话:“河有汛,预差夫一千八百八十人筑堤,只云初日差六十五人,次日转多七人,今有三日连差三百人,问已差人几天,差人几何?”其大意为“官府陆续派遣1880人前往修筑堤坝,第一天派出65人,从第二天开始每天派出的人数比前一天多7人.已知最后三天一共派出了300人,则目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人10.已知直线与抛物线C:相交于A,B两点,O为坐标原点,,的斜率分别为,,则()A. B.C. D.11.由直线上的点向圆引切线,则切线长的最小值为()A. B.C.4 D.212.已知函数,.若存在三个零点,则实数的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知B(,0)是圆A:内一点,点C是圆A上任意一点,线段BC的垂直平分线与AC相交于点D.则动点D的轨迹方程为_________________.14.已知函数,若,则________.15.已知直线与圆交于,两点,则的最小值为___________.16.如图,椭圆的中心在坐标原点,是椭圆的左焦点,分别是椭圆的右顶点和上顶点,当时,此类椭圆称为“黄金椭圆”,则“黄金椭圆”的离心率___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知点在椭圆上,其中为椭圆E的离心率(1)求b的值;(2)A,B分别为椭圆E的左右顶点,过点的直线l与椭圆E相交于M,N两点,直线与交于点T,求证:18.(12分)已知函数(1)解不等式;(2)若不等式对恒成立,求实数m的取值范围19.(12分)已知抛物线的焦点,点在抛物线上.(1)求;(2)过点向轴作垂线,垂足为,过点的直线与抛物线交于两点,证明:为直角三角形(为坐标原点).20.(12分)已知函数(1)若在点处的切线与轴平行,求的值;(2)当时,求证:;(3)若函数有两个零点,求的取值范围21.(12分)给定函数.(1)判断函数f(x)的单调性,并求出f(x)的极值;(2)画出函数f(x)的大致图象,无须说明理由(要求:坐标系中要标出关键点);(3)求出方程的解的个数.22.(10分)已知函数.(1)若,求函数在处的切线方程;(2)讨论函数在上的单调性.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】把椭圆方程化为标准方程可判断焦点位置和求出长轴长.【详解】椭圆化为标准方程为,所以,且,所以椭圆焦点在轴上,,长轴长为.故选:B.2、B【解析】根据等差数列下标的性质,,进而根据条件求出,然后结合等差数列的求和公式和下标性质求得答案.【详解】由题意,,即为递增数列,所以,又,又,联立方程组解得:.于是,.故选:B.3、C【解析】将全称命题否定为特称命题即可【详解】由题意,根据全称命题与特称命题的关系,可得命题,则,故选:C.4、A【解析】根据条件,列出满足条件的不等式,求的取值范围.【详解】曲线表示交点在轴的椭圆,,解得:.故选A【点睛】本题考查根据椭圆的焦点位置求参数的取值范围,意在考查基本概念,属于基础题型.5、A【解析】由已知,分别表示出选项对应的向量,然后利用平面向量共线定理进行判断即可完成求解.【详解】因,,,选项A,,,若A,B,D三点共线,则,即,解得,故该选项正确;选项B,,,若A,B,C三点共线,则,即,解得不存,故该选项错误;选项C,,,若B,C,D三点共线,则,即,解得不存在,故该选项错误;选项D,,,若A,C,D三点共线,则,即,解得不存在,故该选项错误;故选:A.6、C【解析】利用面面垂直性质结合已知寻找两两垂直的三条直线建立空间直角坐标系,用向量法可解.【详解】取的中点O,连接OB,过O在平面ACDE面内作交DE于F∵平面平面ABC,平面ACDE平面ABC=AC,平面ACDE,∴平面ABC∴∵是边长为4的等边三角形,四边形ACDE是矩形,∴以O为原点,OA,OB,OF分别为x,y,z轴,建立如图所示空间直角坐标系则,,,设平面ABD的单位法向量,,由解得取,则∴点C到平面ABD的距离.故选:C7、D【解析】根据给出的循环程序进行求解,直到满足,输出.【详解】,,,,,,,,,,,,所以.故选:D8、B【解析】根据题意得到几何体为半径为1的球,长方体的体对角线为球的直径时,长方体体积最大,设出长方体的长和宽,得到等量关系,利用基本不等式求解体积最大值.【详解】由题意得:此几何体为半径为1的球,长方体为球的内接长方体时,体积最大,此时长方体的体对角线为球的直径,设长方体长为,宽为,则由题意得:,解得:,而长方体体积为,当且仅当时等号成立,故选:B9、B【解析】根据题意,设每天派出的人数组成数列,可得数列是首项,公差数7的等差数列,解方程可得所求值【详解】解:设第天派出的人数为,则是以65为首项、7为公差的等差数列,且,,∴,,∴天则目前派出的人数为人,故选:B10、C【解析】设,,由消得:,又,由韦达定理代入计算即可得答案.【详解】设,,由消得:,所以,故.故选:C【点睛】本题主要考查了直线与抛物线的位置关系,直线的斜率公式,考查了转化与化归的思想,考查了学生的运算求解能力.11、D【解析】切点与圆心的连线垂直于切线,切线长转化为直线上点与圆心连线和半径的关系,利用点到直线的距离公式求出圆心与直线上点距离的最小值,结合勾股定理即可得出结果.【详解】设为直线上任意一点,,切线长的最小值为:,故选:D.12、B【解析】根据题意,当时,有一个零点,进而将问题转化为当时,有两个实数根,再研究函数即可得答案.【详解】解:因为存在三个零点,所以方程有三个实数根,因为当时,由得,解得,有且只有一个实数根,所以当时,有两个实数根,即有两个实数根,所以令,则,所以当时,,单调递增,当时,,单调递减,因为,,,所以的图象如图所示,所以有两个实数根,则故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用椭圆的定义可得轨迹方程.【详解】连接,由题意,,则,由椭圆的定义可得动点D的轨迹为椭圆,其焦点坐标为,长半轴长为2,故短半轴长为1,故轨迹方程为:.故答案为:.14、【解析】求出导函数,确定导函数奇函数,然后可求值【详解】由已知,它是奇函数,∴故答案为:【点睛】本题考查导数的运算,考查函数的奇偶性,确定函数的奇偶性是解题关键15、【解析】先求出直线经过的定点,再求出圆心到定点的距离,数形结合即得解.【详解】由题得,所以直线经过定点,圆的圆心为,半径为.圆心到定点的距离为,当时,取得最小值,且最小值为.故答案为:816、或【解析】写出,,求出,根据以及即可求解,【详解】由题意,,,所以,,因为,则,即,即,所以,即,解得或(舍).故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1(2)证明见解析【解析】(1)根据点在椭圆E上建立方程,结合,然后解出方程即可;(2)联立直线与椭圆的方程,表示出直线与,求得交点的坐标,再分别表示出直线和的斜率并作差,通过韦达定理证明直线和的斜率相等即可.【小问1详解】由点在椭圆E上,得:又,即解得:【小问2详解】依题意,得,且直线l与x轴不会平行设直线l的方程为,,由方程组消去x可得:则有:,且直线的方程为,直线的方程为由方程组可得:设直线的斜率分别是,则有:可得:又可得:故【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系(2)涉及到直线方程时,务必考虑全面,不要忽略直线斜率为或不存在等特殊情形请考生在第22-23题中任选一题作答,如果多做,则按所做的第一题计分18、(1)(2)【解析】(1)移项,两边平方即可获解;(2)利用绝对值不等式即可.【小问1详解】即即,即即即或所以不等式的解集为【小问2详解】由题知对恒成立因为.所以,解得即或,所以实数的取值范为19、(1)(2)证明见解析【解析】(1)点代入即可得出抛物线方程,根据抛物线的定义即可求得.(2)由题,设直线的方程为:,与抛物线方程联立,可得,利用韦达定理证得即可得出结论.【小问1详解】点在抛物线上.,则,所以.【小问2详解】证明:由题,设直线的方程为:,点联立方程,消得:,由韦达定理有,由,所以,所以,所以,所以为直角三角形.20、(1);(2)证明见解析;(3).【解析】(1)由可求得实数的值;(2)利用导数分析函数的单调性,求得,即可证得结论成立;(3)分析可知在上存在唯一的极值点,且,可得出,构造函数,分析函数的单调性,求得的取值范围,再构造,分析函数的单调性,求出的范围,即可得出的取值范围.【小问1详解】解:因为的定义域为,.由题意可得,解得.【小问2详解】证明:当时,,该函数的定义域为,,令,其中,则,故函数在上递减,因为,,所以,存在,使得,则,且,当时,,函数单调递增,当时,,函数单调递减,所以,,所以,当时,.【小问3详解】解:函数的定义域为,.令,其中,则,所以,函数单调递减,因为函数有两个零点,等价于函数在上存在唯一的极值点,且为极大值点,且,即,所以,,令,其中,则,故函数在上单调递增,又因为,由,可得,构造函数,其中,则,所以,函数在上单调递增,故,因此,实数的取值范围是.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式(或)转化为证明(或),进而构造辅助函数;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.21、(1)函数的减区间为,增区间为,有极小值,无极大值;(2)具体见解析;(3)具体见解析.【解析】(1)对函数求导,进而求出单调区间和极值;(2)结合(1),并代入几个特殊点,再结合函数的变化趋势作出图象;(3)结合(2),采用数形结合的方法求得答案.【小问1详解】,时,,单调递减,时,,单调递增,故函数在x=-1处取得极小值为,无极大值.【小问2详解】作图说明:由(1)可知函数先减后增,有极小值;描出极小值点,原点和点(1,e);当时,函数增加得越来越快,当时,函数越来越接近于0.【小问3详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度水泥活动板房安装技术指导合同3篇
- 2024年度水利工程施工总承包合同2篇
- 二零二四年度体育赛事策划合同2篇
- 基于二零二四年度的智能交通系统合同3篇
- 2024年度图书出版分期付款版权转让合同2篇
- 二零二四年度医疗服务合同:医疗健康检查与诊疗服务协议
- 二零二四年度物流管理系统建设与维护合同2篇
- 2024年工程成本控制全方位咨询合同版B版
- 2024年度标准堰塘养殖承包合同模板版
- 二零二四年度游泳馆建设合同2篇
- 2022年山东省财金投资集团有限公司校园招聘笔试试题及答案解析
- 泌尿外科三甲工作汇报-课件
- 小学语文人教五年级上册第四单元古诗词中的家国情怀
- 新老7种QC工具课件
- 腹直肌分离康复(产后康复课件PPT)
- optimact540技术参考手册
- 丙型肝炎病毒课件
- 2023届高三语文复习:山水田园类诗歌阅读专项练习
- (新版)血液透析专科理论考试题库(参考500题)
- 四川省巴中市各县区乡镇行政村村庄村名居民村民委员会明细
- 浙江省土地整治专项项目耕地质量等别评定外业调查重点技术标准手册
评论
0/150
提交评论