版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山西省祁县中学高二数学第一学期期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,若对任意的,,都有成立,则实数的取值范围是()A. B.C. D.2.下列直线中,倾斜角最大的为()A. B.C. D.3.已知双曲线上的点到的距离为15,则点到点的距离为()A.7 B.23C.5或25 D.7或234.如图,在四棱锥中,平面,底面是正方形,,则下列数量积最大的是()A. B.C. D.5.已知点分别为圆与圆的任意一点,则的取值范围是()A. B.C. D.6.已知定义在R上的函数满足,且有,则的解集为()A B.C. D.7.设变量,满足约束条件,则目标函数的最大值为()A. B.0C.6 D.88.窗花是贴在窗纸或窗户玻璃上的剪纸,是古老的传统民间艺术之一.如图是一个窗花的图案,以正六边形各顶点为圆心、边长为半径作圆,阴影部分为其公共部分.现从该正六边形中任取一点,则此点取自于阴影部分的概率为()A. B.C. D.9.已知向量,,且,则实数等于()A1 B.2C. D.10.已知函数,若对任意的,,且,总有,则的取值范围是()A B.C. D.11.已知、为非零实数,若且,则下列不等式成立的是()A. B.C. D.12.如图为某几何体的三视图,则该几何体中最大的侧面积是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在长方体ABCD﹣A'B'C'D'中,点P,Q分别是棱BC,CD上的动点,BC=4,CD=3,CC'=2,直线CC'与平面PQC'所成的角为30°,则△PQC'的面积的最小值是__14.已知椭圆与双曲线具有相同的焦点,,且在第一象限交于点,设椭圆和双曲线的离心率分别为,,若,则的最小值为_______.15.若分别是平面的法向量,且,,,则的值为________.16.已知、是椭圆的两个焦点,点在椭圆上,且,,则椭圆离心率是___________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)记函数,当时,讨论函数的单调性;(2)设,若存在两个不同的零点,证明:为自然对数的底数).18.(12分)如图,四边形是矩形,平面平面,为中点,,,(1)证明:平面平面;(2)求二面角的余弦值19.(12分)在平面直角坐标系xOy中,已知椭圆C:的焦距为4,且过点.(1)求椭圆C的方程;(2)设椭圆C的上顶点为B,右焦点为F,直线l与椭圆交于M,N两点,问是否存在直线l,使得F为的垂心(高的交点),若存在,求出直线l的方程:若不存在,请说明理由.20.(12分)椭圆的一个顶点为,离心率(1)求椭圆方程;(2)若直线与椭圆交于不同的两点.若满足,求直线的方程21.(12分)已知平面直角坐标系上一动点满足:到点的距离是到点的距离的2倍.(1)求点的轨迹方程;(2)若点与点关于直线对称,求的最大值.22.(10分)已知椭圆C:的长轴长为4,离心率e是方程的一根(1)求椭圆C的方程;(2)已知O是坐标原点,斜率为k的直线l经过点,已知直线l与椭圆C相交于点A,B,求面积的最大值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据题意,将问题转化为对任意的,,利用导数求得的最大值,再分离参数,构造函数,利用导数求其最大值,即可求得参数的取值范围.【详解】由题可知:对任意的,,都有恒成立,故可得对任意的,;又,则,故在单调递减,在单调递增,又,,则当时,,.对任意的,,即,恒成立.也即,不妨令,则,故在单调递增,在单调递减.故,则只需.故选:B.2、D【解析】首先分别求直线的斜率,再结合直线倾斜角与斜率的关系,即可判断选项.【详解】A.直线的斜率;B.直线的斜率;C.直线的斜率;D.直线的斜率,因为,结合直线的斜率与倾斜角的关系,可知直线的倾斜角最大.故选:D3、D【解析】根据双曲线的定义知,,即可求解.【详解】由题意,双曲线,可得焦点坐标,根据双曲线的定义知,,而,所以或故选:D【点睛】本题主要考查了双曲线的定义及其应用,其中解答中熟记双曲线的定义,列出方程是解答的关键,着重考查推理与运算能力,属于基础题.4、B【解析】设,根据线面垂直的性质得,,,,根据向量数量积的定义逐一计算,比较可得答案.【详解】解:设,因为平面,所以,,,,又底面是正方形,所以,,对于A,;对于B,;对于C,;对于D,,所以数量积最大的是,故选:B.5、B【解析】先判定两圆的位置关系为相离的关系,然后利用几何方法得到的取值范围.【详解】的圆心为,半径,的圆心为,半径,圆心距,∴两圆相离,∴,故选:B.6、A【解析】构造,应用导数及已知条件判断的单调性,而题设不等式等价于即可得解.【详解】设,则,∴在R上单调递增.又,则.∵等价于,即,∴,即所求不等式的解集为.故选:A7、C【解析】画出可行域,利用几何意义求出目标函数最大值.【详解】画出图形,如图所示:阴影部分即为可行域,当目标函数经过点时,目标函数取得最大值.故选:C8、D【解析】求得阴影部分的面积,结合几何概型概率计算公式,计算出所求的概率.【详解】设正六边形的边长为,则其面积为.阴影部分面积为,故所求概率为.故选:D9、C【解析】利用空间向量垂直的坐标表示计算即可得解【详解】因向量,,且,则,解得,所以实数等于.故选:C10、B【解析】根据函数单调性定义、二次函数性质及对称轴方程,即可求解参数取值范围.【详解】依题意可得,在上为减函数,则,即的取值范围是故选:B【点睛】本题考查函数单调性定义,二次函数性质,属于基础题.11、D【解析】作差法即可逐项判断.【详解】或,对于A:,∵,无法判断正负,故A错误;对于B:,∵无法判断正负,故B错误;对于C:,∵,,∴,,故C错误;对于D:,∴,故D正确.故选:D.12、B【解析】由三视图还原原几何体,确定几何体的结构,计算各面面积可得【详解】由三视图,原几何体是三棱锥,平面,,尺寸见三视图,,,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】设三棱锥C﹣C′PQ的高为h,CQ=x,CP=y,由体积法求得的关系,由直线CC’与平面C’PQ成的角为30°,得到xy≥8,再由VC﹣C′PQ=VC′﹣CPQ,能求出△PQC'的面积的最小值【详解】解:设三棱锥C﹣C′PQ的高为h,CQ=x,CP=y,由长方体性质知两两垂直,所以,,,,,所以,由得,所以,∵直线CC’与平面C’PQ成的角为30°,∴h=2,∴,,∴xy≥8,再由体积可知:VC﹣C′PQ=VC′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面积的最小值是8故答案为:814、【解析】由题意设焦距为,椭圆长轴长为,双曲线实轴为,令在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出,由此能求出的最小值【详解】由题意设焦距为,椭圆长轴长为,双曲线实轴为,令在双曲线的右支上,由双曲线的定义,由椭圆定义,可得,,又,,可得,得,即,可得,则,当且仅当,上式取得等号,可得的最小值为故答案为:【点睛】本题考查椭圆和双曲线的性质,主要是离心率,解题时要熟练掌握双曲线、椭圆的定义,注意均值定理的合理运用15、-1或-2【解析】由题可得,即求.【详解】依题意,,解得或.故答案为:或.16、【解析】先由,根据椭圆的定义,求出,,再由余弦定理,根据,即可列式求出离心率.【详解】因为点在椭圆上,所以,又,所以,因,在中,由,根据余弦定理可得,解得(负值舍去)故答案为:.【点睛】本题主要考查求椭圆的离心率,属于常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)在和上单调递增;在上单调递减(2)证明见解析【解析】(1)先求导,然后对导数化简整理后再解不等式即可得单调性;(2)要证明,通过求函数的极值可证明,要证,根据有两个不同的零点,将问题转化为证明成立,再通过换元从求函数的最值上证明.【小问1详解】因为,所以,令,得或.所以时,或;时,.所以在和上单调递增;在上单调递减.【小问2详解】因为,所以.当时,,可得在上单调递减,此时不可能存在两个不同的零点,不符合题意.当时,.令,得.当时,;当时,.所以在上单调递增,在上单调递减.而当时,,时,.所以要使存在两个不同的零点,则,即,解得.因为存在两个不同的零点,则,即.不妨设,则,则,要证,即证,即证,即,.即证,令,则,所以在上单调递增,所以,即,所以成立.综上有.【关键点点睛】解决本题的第(1)问的关键是对导函数的分子因式分解;解决第(2)问的关键一是分步证明,二是研究函数的单调性,三是转化思想的运用,四是换元思想的运用.18、(1)证明见解析;(2)【解析】(1)利用面面垂直的性质,证得平面,进而可得,平面即可得证;(2)在平面ABC内过点A作Ax⊥AB,以A为原点建立空间直角坐标系,借助空间向量而得解.【详解】(1)因为,为中点,所以,因为是矩形,所以,因为平面平面,平面平面,平面,所以平面,因为平面,所以,又,平面,,所以平面,又平面,所以平面平面;(2)在平面ABC内过点A作Ax⊥AB,由(1)知,平面,故以点A为坐标原点,分别以,,的方向为轴,轴,轴的正方向,建立空间直角坐标系,如图:则,,,,,则,所以,,,,由(1)知,为平面的一个法向量,设平面的法向量为,则,即,令,则,,所以,所以,因为二面角为锐角,则二面角的余弦值为.【点睛】思路点睛:二面角大小求解时要注意结合实际图形判断所求角是锐角还是钝角19、(1)(2)存在:【解析】(1)根据题意,列出关于a,b,c的关系,计算求值,即可得答案.(2)由(1)可得B、F点坐标,可得直线BF的斜率,根据F为垂心,可得,可得直线l的斜率,设出直线l的方程,与椭圆联立,根据韦达定理,结合垂心的性质,列式求解,即可得答案.【小问1详解】因为焦距为4,所以,即,又过点,所以,又,联立求得,所以椭圆C的方程为【小问2详解】由(1)可得,所以,因为F为垂心,直线BF与直线l垂直,所以,则,即直线l的斜率为1,设直线l的方程为,,与椭圆联立得,,所以,因为F为垂心,所以直线BN与直线MF垂直,所以,即,又,所以,即,所以,解得或,由,解得,又时,直线l过点B,不符合题意,所以,所以存在直线l:,满足题意.20、(1);(2)【解析】(1)首先由椭圆的一个顶点可以求出的值,再根据离心率可得到、的关系,联立即可求得的值,进而得到椭圆的方程;(2)先联立直线与椭圆,结合韦达定理得到线段的中点的坐标,再根据,即可求得的值,进而求得直线的方程【详解】(1)由一个顶点为,离心率,可得,,,解得,,即有椭圆方程为(2)由知点在线段的垂直平分线上,由,消去得,由,得方程的,即方程有两个不相等的实数根设、,线段的中点,则,所以,所以,即,因为,所以直线的斜率为,由,得,所以,解得:,即有直线的方程为21、(1)(2)【解析】(1)直接法求动点的轨迹方程,设点,列方程即可.(2)点关于直线对称的对称点问题,可以先求出点到直线的距离最值的两倍就是的距离,也可以求出点的轨迹方程直接求解的距离.【小问1详解】设,由题意,得:,化简得,所以点轨迹方程为【小问2详解】方法一:设,因为点与点关于点对称,则点坐标为,因为点在圆,即上运动,所以,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年适用演艺经纪合同样本
- 2024年私人租房合同特设房屋租赁退租保证金管理协议3篇
- 2025版垃圾场绿化景观施工合同3篇
- 2024教育培训机构合作合同师资共享
- 2025年度智慧农业项目管理咨询合同书模板3篇
- 2025版高科技企业股权激励与转让合同范本3篇
- 2025年度BIM智慧城市建设战略规划合同3篇
- 建材购销合同3
- 2025舞台灯光租赁合同
- 2024年独家:砖厂连同配套设施整体出让合同3篇
- 研学活动协议书合同范本
- ISBAR辅助工具在交班中应用
- AIGC行业报告:国内外大模型和AI应用梳理
- Module 6 Unit 2 It was amazing.(说课稿)-2023-2024学年外研版(一起)英语五年级下册
- 湖北省十堰市2023-2024学年高二上学期期末调研考试 地理 含答案
- 寒假假前安全教育课件
- GB/T 44591-2024农业社会化服务社区生鲜店服务规范
- 专题03 一次函数图像和性质(十大类型)(题型专练)(原卷版)-A4
- 焊工(高级)职业技能鉴定考试题及答案(新版)
- 《义务教育语文课程标准》2022年修订版原版
- 2024年影视艺术概论复习考试题(附答案)
评论
0/150
提交评论