浙江省义乌市2024年数学九上开学达标检测模拟试题【含答案】_第1页
浙江省义乌市2024年数学九上开学达标检测模拟试题【含答案】_第2页
浙江省义乌市2024年数学九上开学达标检测模拟试题【含答案】_第3页
浙江省义乌市2024年数学九上开学达标检测模拟试题【含答案】_第4页
浙江省义乌市2024年数学九上开学达标检测模拟试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页浙江省义乌市2024年数学九上开学达标检测模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④ D.④⑤2、(4分)一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D.x>23、(4分)将抛物线y=2(x-7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移中正确的是()A.向上平移3个单位B.向下平移3个单位C.向左平移7个单位D.向右平移7个单位4、(4分)若,则下列式子中错误的是()A. B. C. D.5、(4分)某景点的参观人数逐年增加,据统计,2015年为10.8万人次,2017年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8 B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8 D.10.8[(1+x)+(1+x)2]=16.86、(4分)化简:的结果是()A. B. C.﹣ D.﹣7、(4分)若y=(m﹣2)x+(m2﹣4)是正比例函数,则m的取值是()A.2 B.﹣2 C.±2 D.任意实数8、(4分)下列各式中,正确的是()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知点A(﹣,a),B(3,b)在函数y=﹣3x+4的象上,则a与b的大小关系是_____.10、(4分)分解因式___________11、(4分)如图,已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,若AB=6,则OE=_____.12、(4分)如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠ECD=___°.13、(4分)已知中,,则的度数是_______度.三、解答题(本大题共5个小题,共48分)14、(12分)已知关于的一元二次方程,(1)求证:无论m为何值,方程总有两个不相等的实数根;(2)当m为何值时,该方程两个根的倒数之和等于1.15、(8分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第一年的可变成本为2.6万元,设可变成本平均每年增长的百分率为(1)用含x的代数式表示第3年的可变成本为万元;(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年的增长百分率x.16、(8分)益民商店经销某种商品,进价为每件80元,商店销售该商品每件售价高干8元且不超过120元若售价定为每件120元时,每天可销售200件,市场调查反映:该商品售价在120元的基础上,每降价1元,每天可多销售10件,设该商品的售价为元,每天销售该商品的数量为件.(1)求与之间的函数关系式;(2)商店在销售该商品时,除成本外每天还需支付其余各种费用1000元,益民商店在某一天销售该商品时共获利8000元,求这一天该商品的售价为多少元?17、(10分)在数学兴趣小组活动中,小明进行数学探究活动.将大小不相同的正方形ABCD与正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明;(2)如图2,小明将正方形ABCD绕点A转动,当点B恰好落在线段DG上时①猜想线段DG和BE的位置关系是.②若AD=2,AE=,求△ADG的面积.18、(10分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为多少人,扇形统计图中A部分的圆心角是多少度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)线段AB的两端点的坐标为A(﹣1,0),B(0,﹣2).现请你在坐标轴上找一点P,使得以P、A、B为顶点的三角形是直角三角形,则满足条件的P点的坐标是______.20、(4分)若是完全平方式,则的值是__________.21、(4分)如果是关于的方程的增根,那么实数的值为__________22、(4分)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.23、(4分)如图,以点O为圆心的三个同心圆把以OA1为半径的大圆的面积四等分,若OA1=R,则OA4:OA3:OA2:OA1=______________,若有()个同心圆把这个大圆等分,则最小的圆的半径是=_______.二、解答题(本大题共3个小题,共30分)24、(8分)如图,直线y=﹣2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线BP与x轴相交于点P,且使OP=2OA,求△ABP的面积.25、(10分)如图,小亮从点处出发,前进5米后向右转,再前进5米后又向右转,这样走次后恰好回到出发点处.(1)小亮走出的这个边形的每个内角是多少度?这个边形的内角和是多少度?(2)小亮走出的这个边形的周长是多少米?26、(12分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF.(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】试题分析:①、MN=AB,所以MN的长度不变;②、周长C△PAB=(AB+PA+PB),变化;③、面积S△PMN=S△PAB=×AB·h,其中h为直线l与AB之间的距离,不变;④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线2、C【解析】

由图象可知,直线与x轴相交于(1,0),当y>0时,x<1.故答案为x<1.3、C【解析】

按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】依题意可知,原抛物线顶点坐标为(7,3),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向左平移7个单位即可.故选C.本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k

(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.4、C【解析】

A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.【详解】∵x>y,∴x+2>y+2,∴选项A不符合题意;∵x>y,∴x-2>y-2,∴选项B不符合题意;∵x>y,∴−2x<−2y,∴选项C符合题意;∵x>y,∴,∴选项D不符合题意,故选C.此题考查不等式的性质,解题关键在于掌握其性质.5、C【解析】试题分析:设参观人次的平均年增长率为x,根据题意可得等量关系:10.8万人次×(1+增长率)2=16.8万人次,根据等量关系列出方程10.8(1+x)2=16.8,故选C.考点:由实际问题抽象出一元二次方程6、D【解析】

根据二次根式的性质由题意可知,我们在变形时要注意原式的结果应该是个负数,然后根据二次根式的性质化简而得出结果.【详解】解:原式故选:.本题考查了二次根式的性质与二次根式的化简,关键要把握住二次根式成立的条件.7、B【解析】

正比例函数的一般式y=kx,k≠0,所以使m2-4=0,m-2≠0即可得解.【详解】由正比例函数的定义可得:m2-4=0,且m-2≠0,解得,m=-2;故选B.8、B【解析】

,要注意的双重非负性:.【详解】;;;,故选B.本题考查平方根的计算,重点是掌握平方根的双重非负性.二、填空题(本大题共5个小题,每小题4分,共20分)9、a>b【解析】

根据k<0,y随x增大而减小解答【详解】解:∵k=﹣3<0,∴y随x的增大而减小,∵﹣<3,∴a>b.故答案为:a>b.此题主要考查了一次函数的图像上点的坐标特征,利用一次函数的增减性求解更简便10、【解析】

原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x(y2+2y+1)=2x(y+1)2,故答案为2x(y+1)2此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11、3【解析】

根据平行四边形的对角线互相平分可得OA=OC,然后判断出OE是三角形的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OE=AB.【详解】解:在▱ABCD中,OA=OC,∵点E是BC的中点,∴OE是三角形的中位线,∴OE=AB=3故答案为3本题考查了平行四边形的性质和三角形中位线定理,平行四边形对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.12、17.1.【解析】

根据矩形的性质由∠ADF求出∠CDF,再由等腰三角形的性质得出∠ECD即可.【详解】解:∵四边形ABCD是矩形,∴∠ADC=90°,∵∠ADF=21°,∴∠CDF=∠ADC﹣∠ADF=90°﹣21°=61°,∵DF=DC,∴∠ECD=,故答案为:17.1.本题考查了矩形的性质,等腰三角形的性质,解本题的关键是求出∠CDF.是一道中考常考的简单题.13、100【解析】

根据平行四边形对角相等的性质,即可得解.【详解】∵中,,∴故答案为100.此题主要考查平行四边形的性质,熟练掌握,即可解题.三、解答题(本大题共5个小题,共48分)14、(2)见解析(2)【解析】

(2)根据方程的系数结合根的判别式,可得出△=2m2+4>0,进而即可证出:方程总有两个不相等的实数根;

(2)利用根与系数的关系列式求得m的值即可.【详解】证明:△=(m+2)2-4×2×(m-2)=m2+2.

∵m2≥0,

∴m2+2>0,即△>0,

∴方程总有两个不相等的实数根.

(2)设方程的两根为a、b,

利用根与系数的关系得:a+b=-m-2,ab=m-2

根据题意得:=2,

即:=2

解得:m=-,

∴当m=-时该方程两个根的倒数之和等于2.本题主要考查根与系数的关系,解题的关键是掌握根与系数的关系及根的判别式.15、(1)2.6(1+x)2;(2)10%.【解析】

(1)将基本等量关系“本年的可变成本=前一年的可变成本+本年可变成本的增长量”以及“本年可变成本的增长量=前一年的可变成本×可变成本平均每年增长的百分率”综合整理可得:本年的可变成本=前一年的可变成本×(1+可变成本平均每年增长的百分率).根据这一新的等量关系可以由第1年的可变成本依次递推求出第2年以及第3年的可变成本.(2)由题意知,第3年的养殖成本=第3年的固定成本+第3年的可变成本.现已知固定成本每年均为4万元,在第(1)小题中已求得第3年的可变成本与x的关系式,故根据上述养殖成本的等量关系,容易列出关于x的方程,解方程即可得到x的值.【详解】解:(1)∵该养殖户第1年的可变成本为2.6万元,又∵该养殖户的可变成本平均每年增长的百分率为x,∴该养殖户第2年的可变成本为:2.6(1+x)(万元),∴该养殖户第3年的可变成本为:[2.6(1+x)](1+x)=2.6(1+x)2(万元).故本小题应填:2.6(1+x)2.(2)根据题意以及第(1)小题的结论,可列关于x的方程:4+2.6(1+x)2=7.146解此方程,得x1=0.1,x2=-2.1,由于x为可变成本平均每年增长的百分率,x2=-2.1不合题意,故x的值应为0.1,即10%.答:可变成本平均每年增长的百分率为10%.本题考查了一元二次方程相关应用题中的“平均增长率”型问题.对“平均增长率”意义的理解是这类应用题的难点.这类实际问题中某量的增长一般分为两个阶段且每个阶段的实际增长率不同.假设该量的值在保持某一增长率不变的前提下由原值增长两次,若所得的最终值与实际的最终值相同,则这一不变的增长率就是该量的“平均增长率”.16、(1)y=−10x+1400;(2)这一天的销售单价为110元.【解析】

(1)首先利用当售价定为每件120元时每天可售出200件,该商品销售单价在120元的基础上,每降1元,每天可多售出10件,进而求出每天可表示出销售商品数量;

(2)设商场日盈利达到8000元时,每件商品售价为x元,根据每件商品的盈利×销售的件数=商场的日盈利,列方程求解即可.【详解】解:(1)由题意得:y=200+10(120−x)=−10x+1400;∴y=−10x+1400;

(2)由题意可得:

(−10x+1400)(x−80)−1000=8000,

整理得:x2−220x+12100=0,

解得:x1=x2=110,

答:这一天的销售单价为110元.此题主要考查了一次函数的应用以及一元二次方程的应用,正确得出y与x的关系式是解题关键.17、(1)详见解析;(2)①DG⊥BE;②1.【解析】

(1)利用正方形得到条件,判断出△ADG≌△ABE,根据全等三角形的性质即可得到结论;(2)①同理证明△ADG≌△ABE,根据全等三角形的性质即可得到结论;②分别计算DM、MG和AM的长,根据三角形面积可得结论.【详解】证明:(1)如图1,延长EB交DG于点H,∵四边形ABCD与四边形AEFG是正方形,∴AD=AB,∠DAG=∠BAE=90°,AG=AE在△ADG与△ABE中,,∴△ADG≌△ABE(SAS),∴∠AGD=∠AEB,DG=BE,∵△ADG中,∠AGD+∠ADG=90°,∴∠AEB+∠ADG=90°,∵△DEH中,∠AEB+∠ADG+∠DHE=180°,∴∠DHE=90°,∴DG⊥BE;(2)①DG⊥BE,理由是:如图2,∵四边形ABCD和四边形AEFG都为正方形,∴AD=AB,∠DAB=∠GAE=90°,AG=AE,∴∠DAB+∠BAG=∠GAE+∠BAG,即∠DAG=∠BAE,在△ADG和△ABE中,,∴△ADG≌△ABE(SAS),∴∠ABE=∠ADG∴∠DBE=∠ABE+∠ABD=∠ABD+∠ADG=90°,∴DG⊥BE;故答案为DG⊥BE;②如图2,过点A作AM⊥DG交DG于点M,∠AMD=∠AMG=90°,∵BD是正方形ABCD的对角线,∴∠MDA=41°在Rt△AMD中,∵∠MDA=41°,AD=2,∴AM=DM=2,在Rt△AMG中,∵AM2+GM2=AG2∴GM==3,∵DG=DM+GM=2+3=1,∴S△ADG=DG•AM=×1×2=1.此题是四边形的综合题,考查了旋转的性质和正方形的性质,用到的知识点是旋转的性质、全等三角形的判定,勾股定理和正方形的性质,难度适中,关键是根据题意画出辅助线,构造直角三角形.18、(1)160,54;(2)补全如图所示见解析;(3)该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为294名.【解析】

(1)根据:该项所占的百分比=×100%,圆心角该项的百分比×360°.两图给出了D的数据,代入即可算出调查的总人数,然后再算出A的圆心角;(2)根据条形图中数据和调查总人数,先计算出喜欢“科学探究”的人数,再补全条形图;(3)根据:喜欢某项人数总人数该项所占的百分比,计算即得.【详解】(1)由条形图、扇形图知:喜欢趣味数学的有48人,占调查总人数的30%.所以调查总人数:48÷30%=160(人)图中A部分的圆心角为:×360°=54°(2)喜欢“科学探究”的人数:160﹣24﹣32﹣48=56(人)补全如图所示(3)840×=294(名)答:该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为294名.本题考查了条形图和扇形图及用样本估计总体等知识,难度不大,综合性较强.注意三个公式:①该项所占的百分比=×100%,②圆心角该项的百分比×360°,③喜欢某项人数总人数该项所占的百分比.一、填空题(本大题共5个小题,每小题4分,共20分)19、(0,0)、(0,)、(4,0)【解析】

由平面直角坐标系的特点可知当P和O重合时三角形PAB是直角三角形,由射影定理逆定理可知当AO2=BO•P′O时,三角形PAB是直角三角形或BO2=AO•OP″时三角形PAB也是直角三角形.【详解】如图:①由平面直角坐标系的特点:AO⊥BO,所以当P和O重合时三角形PAB是直角三角形,所以P的坐标为:(0,0);②由射影定理逆定理可知当AO2=BO•P′O时三角形PAB是直角三角形,即:12=2•OP′,解得OP′=;故P点的坐标是(0,);同理当BO2=AO•OP″时三角形PAB也是直角三角形,即22=1OP″解得OP″=4,故P点的坐标是(4,0).故答案为(0,0)、(0,)、(4,0)主要考查了坐标与图形的性质和直角三角形的判定.要把所有的情况都考虑进去,不要漏掉某种情况.20、【解析】

根据完全平方公式即可求解.【详解】∵是完全平方式,故k=此题主要考查完全平方式,解题的关键是熟知完全平方公式的特点.21、1【解析】

分式方程去分母转化为整式方程,把x=2代入计算即可求出k的值.【详解】去分母得:x+2=k+x2-1,把x=2代入得:k=1,故答案为:1.此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.22、8【解析】

解:设边数为n,由题意得,180(n-2)=3603解得n=8.所以这个多边形的边数是8.23、【解析】

根据每个圆与大圆的面积关系,即可求出每个圆的半径长,即可得到结论.【详解】∵π•OA42=π•OA12,

∴OA42=OA12,

∴OA4=OA1;

∵π•OA32=π•OA12,

∴OA32=OA12,

∴OA3=OA1;

∵π•OA22=π•OA12,

∴OA22=OA12,

∴OA2=OA1;∵OA1=R

因此这三个圆的半径为:OA2=R,OA3=R,OA4=R.∴OA4:OA3:OA2:OA1=由此可得,有()个同心圆把这个大圆等分,则最小的圆的半径是=故答案为:(1);(2).本题考查了算术平方根的定义和性质;弄清每个圆与大圆的面积关系是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)A(,0),B(0,3);(2)或.【解析】分析:(1)由函数解析式,令y=0求得A点坐标,x=0求得B点坐标;

(2)有两种情况,若BP与x轴正方向相交于P点,则;若BP与x轴负方向相交于P点,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论