版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届中山纪念中学高二上数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题:;:若,则,则下列判断正确的是()A.为真,为真,为假 B.为真,为假,为真C.为假,为假,为假 D.为真,为假,为假2.“杨辉三角”是中国古代数学文化的瑰宝之一,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现.如图所示的杨辉三角中,第8行,第3个数是()第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28C.36 D.563.在平面直角坐标系中,已知点,,,,直线AP,BP相交于点P,且它们斜率之积是.当时,的最小值为()A. B.C. D.4.若点P是曲线上任意一点,则点P到直线的最小距离为()A.0 B.C. D.5.设函数在定义域内可导,的图像如图所示,则导函数的图象可能为()A. B.C. D.6.若数列的前项和,则此数列是()A.等差数列 B.等比数列C.等差数列或等比数列 D.以上说法均不对7.已知等比数列的前n项和为,公比为q,若,则下列结论正确的是()A. B.C. D.8.在平面直角坐标系xOy中,双曲线(,)的左、右焦点分别为,,点M是双曲线右支上一点,,且,则双曲线的离心率为()A. B.C. D.9.已知正三棱柱中,,点为中点,则异面直线与所成角的余弦值为()A. B.C. D.10.已知,是双曲线的左,右焦点,经过点且与x轴垂直的直线与双曲线的一条渐近线相交于点A,且A在第三象限,四边形为平行四边形,为直线的倾斜角,若,则该双曲线离心率的取值范围是()A. B.C. D.11.在中,角、、所对的边分别是、、.已知,,且满足,则的取值范围为()A. B.C. D.12.不等式的解集为()A. B.C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线C:,经过点P(4,1)的直线l与抛物线C相交于A,B两点,且点P恰为AB的中点,F为抛物线的焦点,则______14.如图,在矩形中,,,将沿BD所在的直线进行翻折,得到空间四边形.给出下面三个结论:①在翻折过程中,存在某个位置,使得;②在翻折过程中,三棱锥的体积不大于;③在翻折过程中,存在某个位置,使得异面直线与所成角45°.其中所有正确结论的序号是___________.15.椭圆的弦被点平分,则这条弦所在的直线方程是________16.写出一个渐近线的倾斜角为且焦点在y轴上的双曲线标准方程___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆心C的坐标为,且是圆C上一点(1)求圆C的标准方程;(2)过点的直线l被圆C所截得的弦长为,求直线l的方程18.(12分)设:实数满足,:实数满足(1)若,且为真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围19.(12分)已知三棱柱中,面底面,,底面是边长为的等边三角形,,、分别在棱、上,且.(1)求证:底面;(2)在棱上找一点,使得和面所成角的余弦值为,并说明理由.20.(12分)已知椭圆F:经过点且离心率为,直线和是分别过椭圆F的左、右焦点的两条动直线,它们与椭圆分别相交于点A、B和C、D,O为坐标原点,直线AB和直线CD相交于M.记直线的斜率分别为,且(1)求椭圆F的标准方程(2)是否存在定点P,Q,使得为定值.若存在,请求出P、Q的坐标,若不存在,请说明理由21.(12分)如图,在四棱锥中,底面ABCD是矩形,M是PA的中点,N是BC的中点,平面ABCD,且,(1)求证:∥平面PCD;(2)求平面MBC与平面ABCD夹角的余弦值22.(10分)某工厂为了解甲、乙两条生产线所生产产品的质量,分别从甲、乙两条生产线生产的产品中各随机抽取了1000件产品,并对所抽取产品的某一质量指数进行检测,根据检测结果按分组,得到如图所示的频率分布直方图,若该工厂认定产品的质量指数不低于6为优良级产品,产品的质量指数在内时为优等品.(1)用统计有关知识判断甲、乙两条生产线所生产产品的质量哪一条更好,并说明理由(同一组中的数据用该组区间的中点值作代表);(2)用分层抽样的方法从该工厂样品的优等品中抽取6件产品,在这6件产品中随机抽取2件,求抽取到的2件产品都是甲生产线生产的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先判断出命题,的真假,即可判断.【详解】因为成立,所以命题为真,由可得或,所以命题为假命题,所以为真,为假,为假.故选:D.2、B【解析】由题意知第8行的数就是二项式的展开式中各项的二项式系数,可得第8行,第3个数是为,即可求解【详解】解:由题意知第8行的数就是二项式的展开式中各项的二项式系数,故第8行,第3个数是为故选:B3、A【解析】设出点坐标,求得、所在直线的斜率,由斜率之积是列式整理即可得到点的轨迹方程,设,根据双曲线的定义,从而求出的最小值;【详解】解:设点坐标为,则直线的斜率;直线的斜率由已知有,化简得点的轨迹方程为又,所以点的轨迹方程为,即点的轨迹为以、为顶点的双曲线的左支(除点),因为,设,由双曲线的定义可知,所以,当且仅当、、三点共线时取得最小值,因为,所以,所以,即的最小值为;故选:A4、D【解析】由导数的几何意义求得曲线上与直线平行的切线方程的切线坐标,求出切点到直线的距离即为所求最小距离【详解】点是曲线上的任意一点,设,令,解得1或(舍去),,∴曲线上与直线平行的切线的切点为,点到直线的最小距离.故选:D.5、D【解析】根据函数的单调性得到导数的正负,从而得到函数的图象.【详解】由函数的图象可知,当时,单调递增,则,所以A选项和C选项错误;当时,先增,再减,然后再增,则先正,再负,然后再正,所以B选项错误.故选:D.【点睛】本题主要考查函数的单调性和导数的关系,意在考查学生对该知识的掌握水平,属于基础题.一般地,函数在某个区间可导,,则在这个区间是增函数;函数在某个区间可导,,则在这个区间是减函数.6、D【解析】利用数列通项与前n项和的关系和等差数列及等比数列的定义判断.【详解】当时,,当时,,当时,,所以是等差数列;当时,为非等差数列,非等比数列’当时,,所以是等比数列,故选:D7、D【解析】根据,可求得,然后逐一分析判断各个选项即可得解.【详解】解:因为,所以,因为,所以,所以,故A错误;又,所以,所以,所以,故BC错误;所以,故D正确.故选:D.8、A【解析】本题考查双曲线的定义、几何性质及直角三角形的判定即可解决.【详解】因为,,所以在中,边上的中线等于的一半,所以.因为,所以可设,,则,解得,所以,由双曲线的定义得,所以双曲线的离心率故选:A9、A【解析】根据异面直线所成角的定义,取中点为,则为异面直线和所成角或其补角,再解三角形即可求出【详解】如图所示:设中点为,则在三角形中,为中点,为中位线,所以有,,所以为异面直线和所成角或其补角,在三角形中,,所以由余弦定理有,故选:A.10、B【解析】根据双曲线的几何性质和平行四边形的性质可知也在双曲线的渐近线上,且在第一象限,从而由可知轴,所以在直角三角形中,,由,可得的范围,进而转化为,的不等式,结合可得离心率的取值范围【详解】解:因为经过点且与轴垂直的直线与双曲线的一条渐近线相交于点,且在第三象限,四边形为平行四边形,所以由双曲线的对称性可知也在双曲线的渐近线上,且在第一象限,由轴,可知轴,所以,在直角三角形中,,因为,所以,,即,所以,即,即,故,所以.故选:B11、D【解析】利用正弦定理边角互化思想化简得出,利用余弦定理化简得出,结合,根据函数在上的单调性可求得的取值范围.【详解】且,所以,由正弦定理得,即,,,所以,,则,由余弦定理得,,则,由于双勾函数在上单调递增,则,即,所以,.因此,的取值范围为.故选:D.【点睛】本题考查三角形内角余弦值的取值范围的求解,考查了余弦定理以及正弦定理边角互化思想的应用,考查计算能力,属于中等题.12、A【解析】先将分式不等式转化为一元二次不等式,然后求解即可【详解】由,得,解得,所以原不等式的解集为,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、9【解析】过A、、作准线的垂线且分别交准线于点、、,根据抛物线的定义可知,由梯形的中位线的性质得出,进而可求出的结果.【详解】由抛物线,可知,则,所以抛物线的焦点坐标为,如图,过点A作垂直于准线交准线于,过点作垂直于准线交准线于,过点作垂直于准线交准线于,由抛物线的定义可得,再根据为线段的中点,而四边形为梯形,由梯形的中位线可知,则,所以.故答案为:9.14、②③【解析】在矩形中,过点作的垂线,垂足分别为,对于①,连接,假设存在某个位置,使得,则可得到,进而得矛盾,可判断;对于②在翻折过程中,当平面平面时,三棱锥的体积取得最大值,再根据几何关系计算即可;对于③,由题知,,设平面与平面所成的二面角为,进而得,进而得异面直线与所成角的余弦值的范围为,即可判断.【详解】解:如图1,在矩形中,过点作的垂线,垂足分别为,则在在翻折过程中,形成如图2的几何体,故对于①,连接,假设存在某个位置,使得,由于,,所以平面,所以,这与图1中的与不垂直矛盾,故错误;对于②在翻折过程中,当平面平面时,三棱锥的体积取得最大值,此时,体积为,故三棱锥的体积不大于,故正确;对于③,,,由②的讨论得,所以,所以,设翻折过程中,平面与平面所成的二面角为,所以,故,由于要使直线与为异面直线,所以,所以,所以,所以异面直线与所成角的余弦值的范围为,由于,所以在翻折过程中,存在某个位置,使得异面直线与所成角为45°.故答案为:②③15、2x+4y-3=0【解析】设弦端点为,又A,B在椭圆上,、即直线AB的斜率为直线AB的方程为,.16、(答案不唯一)【解析】根据已知条件写出一个符合条件的方程即可.【详解】如,焦点在y轴上,令,得渐近线方程为,其中的倾斜角为.故答案为:(答案不唯一).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)计算圆的半径,写出圆的标准方程即可;(2)先验证斜率不存在时,是否满足题意,再分析斜率存在时,利用点到直线距离求出斜率即可得解.【小问1详解】由题意得:所以,圆C的标准方程为【小问2详解】当直线l斜率不存在时,直线l的方程为,此时所截得的线段的长为,符合题意当直线l的斜率存在时,设l的方程为,即,圆心到直线l的距离,由题意,得,解得,∴直线l的方程为,即综上,直线l的方程为或18、(1)(2)【解析】(1)根据二次不等式与分式不等式的求解方法求得命题p,q为真时实数x的取值范围,再求交集即可;(2)先求得,再根据是的必要不充分条件可得,再根据集合包含关系,根据区间端点列不等式求解即可【小问1详解】当时,,解得,即p为真时,实数x的取值范围为.由,解得,即q为真时,实数x的取值范围为若为真,则,解得实数x的取值范围为【小问2详解】若p是q的必要不充分条件,则且设,,则,又由,得,因为,则,有,解得因此a的取值范围为19、(1)证明见解析;(2)为的中点,理由见解析.【解析】(1)取的中点,连接,利用面面垂直的性质定理可得出平面,可得出,再由,结合线面垂直的判定定理可证得结论成立;(2)以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,设点,利用空间向量法可得出关于实数的方程,求出的值,即可得出结论.【详解】(1)取的中点,连接,如图:因为三角形是等边三角形,所以,又因为面底面,平面平面,面,所以平面,又面,所以,又,,平面;(2)以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,则、、,在上找一点,其中,,,,设面的一个法向量,则,不妨令,则,和面所成角的余弦值为,则,解得或(舍),所以,为的中点,符合题意.20、(1);(2)存在点,使得为定值.【解析】(1)设,,,结合条件即求;(2)由题可设直线方程,利用韦达定理法可得,再结合条件可得点的轨迹方程为,然后利用椭圆的定义即得结论.【小问1详解】设,,,椭圆方程为:,椭圆过点,,解得t=1,所以椭圆F的方程是【小问2详解】由题可得焦点的坐标分别为,当直线AB或CD的斜率不存在时,点M的坐标为或,当直线AB和CD的斜率都存在时,设斜率分别为,点,直线AB为,联立,得则,,同理可得,,因为,所以,化简得由题意,知,所以设点,则,所以,化简得,当直线或的斜率不存在时,点M的坐标为或,也满足此方程所以点在椭圆上,根据椭圆定义可知,存在定点,使得为定值【点睛】关键点点睛:本题的关键是利用韦达定理法及题设条件求出点M的轨迹方程,再结合椭圆的定义,从而问题得到解决.21、(1)详见解析;(2)【解析】(1)取PD的中点E,连接ME,CE,易证四边形是平行四边形,得到,再利用线面平行的判定定理证明;(2)建立空间直角坐标系,求得平面MBC的一个法向量,易知平面ABCD的一个法向量为:,由求解.【小问1详解】证明:如图所示:取PD的中点E,连接ME,CE,因为底面ABCD是矩形,M是PA的中点,N是BC的中点,所以,所以四边形是平行四边形,所以,又平面PCD,平面PCD,所以∥平面PCD;【小问2详解】建立如图所示空间直角坐标系:则,所以,设平面MBC的一个法向量为,则,即,令,得,易知平面ABCD的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 律师事务所客户服务指南
- 工厂应急预案演练总结报告
- 数字绘图机相关项目实施方案
- 六年级英语下册Unit 6单元话题写作“国家或城市介绍”译林版三起
- Unit 7 重难知识点(复习讲义)-2023-2024学年五年级英语上册单元速记·巧练(译林版三起)
- 实验室安全教育专题学习通超星期末考试答案章节答案2024年
- 甲板鞋相关项目建议书
- 体育行业运动场馆建设与管理
- 企业级网络安全应急响应预案
- 电子卡读出器项目可行性实施报告
- 我国农产品品牌价值及品牌战略管理研究
- 大学体育理论(山东联盟)智慧树知到课后章节答案2023年下泰山学院
- 红星照耀中国选择题及答案50道
- 特殊学生心理健康基本档案表
- 自然资源学概论期末考试试卷
- 河南省高校毕业生基层就业国家助学贷款代偿申请表
- rmk1608电阻型号命名规则
- 一种40CrNiMoA钢棒的热处理方法及应用与流程
- 2.PaleoScan详细操作流程
- 儿童文学在小学语文教育中的地位和作用
- 纱线上浆浆纱工艺浆料配方
评论
0/150
提交评论