版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省东台市实验初中2025届高一上数学期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,其终边与单位圆相交于点,则()A. B.C. D.2.下列函数在其定义域内既是奇函数,又是增函数的是A. B.C. D.3.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数图象的特征,如函数的大致图象是()A. B.C. D.4.若定义运算,则函数的值域是()A.(-∞,+∞) B.[1,+∞)C.(0.+∞) D.(0,1]5.已知函数(,),若的图像的任何一条对称轴与x轴交点的横坐标均不属于区间,则的取值范围是()A. B.C. D.6.已知扇形的圆心角为,面积为,则扇形的半径为()A. B.C. D.7.基本再生数与世代间隔是流行病学基本参数,基本再生数是指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间,在型病毒疫情初始阶段,可以用指数函数模型描述累计感染病例数随时间(单位:天)的变化规律,指数增长率与、近似满足,有学者基于已有数据估计出,.据此,在型病毒疫情初始阶段,累计感染病例数增加至的4倍,至少需要()(参考数据:)A.6天 B.7天C.8天 D.9天8.已知,设函数,的最大值为A,最小值为B,那么A+B的值为()A.4042 B.2021C.2020 D.20249.已知函数,则下列结论不正确的是()A. B.是的一个周期C.的图象关于点对称 D.的定义域是10.下列函数既是奇函数,又是在区间上是增函数是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.的值为__________12.由于德国著名数学家狄利克雷对数论、数学分析和物理学的突出贡献,人们将函数命名狄利克雷函数,已知函数,下列说法中:①函数的定义域和值域都是;②函数是奇函数;③函数是周期函数;④函数在区间上是单调函数.正确结论是__________13.设为锐角,若,则的值为_______.14.已知,若,则________15.若函数f(x)=的定义域为R,则实数a的取值范围是:_____________.16.已知函数(且)只有一个零点,则实数的取值范围为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆O:,点,点,直线l过点P(1)若直线l与圆O相切,求l的方程;(2)若直线l与圆O交于不同的两点A,B,线段AB的中点为M,且M的纵坐标为-,求△NAB的面积18.已知函数是定义在R上的奇函数,(1)求实数的值;(2)如果对任意,不等式恒成立,求实数的取值范围19.已知函数,函数(1)求函数的值域;(2)若不等式对任意实数恒成立,试求实数的取值范围20.已知定义域为函数是奇函数.(1)求的值;(2)判断的单调性,并证明;(3)若,求实数的取值范围.21.已知集合.(1)当时.求;(2)若是的充分条件,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由已知利用任意角的三角函数求得,再由二倍角的余弦公式求解即可【详解】解:因为角的终边与单位圆相交于点,则,故选:C2、D【解析】分析:利用基本初等函数的单调性和奇偶性的定义,判定各选项中的函数是否满足条件即可.详解:对于A中,函数是定义域内的非奇非偶函数,所以不满足题意;对于B中,函数是定义域内的非奇非偶函数,所以不满足题意;对于C中,函数是定义域内的偶函数,所以不满足题意;对于D中,函数是定义域内的奇函数,也是增函数,所以满足题意,故选D.点睛:本题主要考查了基本初等函数的单调性与奇偶性的判定问题,其中熟记基本初等函数的单调性和奇偶性的判定方法是解答的关键,着重考查了推理与论证能力.3、A【解析】先判断函数的奇偶性,再根据特殊点的函数值选出正确答案.【详解】对于,∵,∴为偶函数,图像关于y轴对称,排除D;由,排除B;由,排除C.故选:A.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象4、D【解析】作出函数的图像,结合图像即可得出结论.【详解】由题意分析得:取函数与中的较小的值,则,如图所示(实线部分):由图可知:函数的值域为:.故选:D.【点睛】本题主要考查了指数函数的性质和应用.考查了数形结合思想.属于较易题.5、C【解析】由已知得,,且,解之讨论k,可得选项.【详解】因为的图像的任何一条对称轴与x轴交点的横坐标均不属于区间,所以,所以,故排除A,B;又,且,解得,当时,不满足,当时,符合题意,当时,符合题意,当时,不满足,故C正确,D不正确,故选:C.【点睛】关键点睛:本题考查根据正弦型函数的对称性求得参数的范围,解决问题的关键在于运用整体代换的思想,建立关于的不等式组,解之讨论可得选项.6、C【解析】利用扇形的面积公式即可求解.【详解】设扇形的半径为,则扇形的面积,解得:,故选:C7、B【解析】根据题意将给出的数据代入公式即可计算出结果【详解】因为,,,所以可以得到,由题意可知,所以至少需要7天,累计感染病例数增加至的4倍故选:B8、D【解析】由已知得,令,则,由的单调性可求出最大值和最小值的和为,即可求解.【详解】函数令,∴,又∵在,时单调递减函数;∴最大值和最小值的和为,函数的最大值为,最小值为;则;故选:9、C【解析】画出函数的图象,观察图象可解答.【详解】画出函数的图象,易得的周期为,且是偶函数,定义域是,故A,B,D正确;点不是函数的对称中心,C错误.故选:C10、A【解析】对于,函数,定义域是,有,且在区间是增函数,故正确;对于,函数的定义域是,是非奇非偶函数,故错误;对于,函数的定义域是,有,在区间不是增函数,故错误;对于,函数的定义域是,有,是偶函数不是奇函数,故错误故选A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据特殊角的三角函数值与对数的运算性质计算可得;【详解】解:故答案为:12、①【解析】由题意知,所以①正确;根据奇函数的定义,x是无理数时,显然不成立,故②错误;当x是有理数时,显然不符合周期函数的定义故③错误;函数在区间上是既不是增函数也不是减函数,故④错误;综上填①.13、【解析】由条件求得的值,利用二倍角公式求得和的值,再根据,利用两角差的正弦公式计算求得结果【详解】∵为锐角,,∴,∴,故,故答案为.【点睛】本题主要考查同角三角函数的基本关系、两角和差的正弦公式、二倍角公式的应用,属于中档题14、1【解析】由已知条件可得,构造函数,求导后可判断函数在上单调递增,再由,得,从而可求得答案【详解】由题意得,,令,则,所以在上单调递增,因为,所以,所以,故答案为:115、【解析】根据题意,有在R上恒成立,则,即可得解.【详解】若函数f(x)=的定义域为R,则在R上恒成立,则,解得:,故答案为:.16、或或【解析】∵函数(且)只有一个零点,∴∴当时,方程有唯一根2,适合题意当时,或显然符合题意的零点∴当时,当时,,即综上:实数的取值范围为或或故答案为或或点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)根据题意,分直线斜率存在与不存在两种情况讨论求解,当直线斜率存在时,根据点到直线的距离公式求参数即可;(2)设直线l方程为,,进而与圆的方程联立得中点的坐标,,解方程得直线方程,再求三角形面积即可.【小问1详解】解:若直线l的斜率不存在,则l的方程为,此时直线l与圆O相切,符合题意;若直线l的斜率存在,设直线l的方程为,因为直线l与圆O相切,所以圆心(0,0)到l的距离为2,即,解得,所以直线l的方程为,即故直线l的方程为或【小问2详解】解:设直线l的方程为,因为直线l与圆O相交,所以结合(1)得联立方程组消去y得,设,则,设中点,,①代入直线l的方程得,②解得或(舍去)所以直线l的方程为因为圆心到直线l的距离,所以因为N到直线l的距离所以18、(1)1(2)【解析】(1)利用函数为奇函数的定义即可得到m值;(2)先判断出函数f(x)在R上单调递增,利用奇偶性和单调性将不等式转为恒成立,然后变量分离,转为求函数最值问题,最后解不等式即可得a的范围.【详解】解:(1)方法1:因为是定义在R上的奇函数,所以,即,即,即方法2:因为是定义在R上的奇函数,所以,即,即,检验符合要求(2),任取,则,因为,所以,所以,所以函数在R上是增函数注:此处交代单调性即可,可不证明因为,且是奇函数所以,因为在R上单调递增,所以,即对任意都成立,由于=,其中,所以,即最小值3所以,即,解得,故,即.【点睛】本题考查函数奇偶性和单调性的综合应用,考查不等式恒成立问题,常用方法为利用变量分离转为函数最值问题,考查学生的计算能力和转化能力,属于中档题.19、(1)[-4,﹢∞);(2)【解析】(1)将原函数转化为二次函数,根据求二次函数最值的方法求解即可.(2)由题意得,求得,然后通过解对数不等式可得所求范围【详解】(1)由题意得,即的值域为[-4,﹢∞).(2)由不等式对任意实数恒成立得,又,设,则,∴,∴当时,=∴,即,整理得,即,解得,∴实数x的取值范围为【点睛】解答本题时注意一下两点:(1)解决对数型问题时,可通过换元的方法转化为二次函数的问题处理,解题时注意转化思想方法的运用;(2)对于函数恒成立的问题,可根据题意转化成求函数的最值的问题处理,特别是对于双变量的问题,解题时要注意分清谁是主变量,谁是参数20、(1)(2)增函数,证明见解析(3)或【解析】(1)由求出,再验证此时为奇函数即可;(2)将的解析式分离常数后可判断出单调性,再利用增函数的定义可证结论成立;(3)利用奇函数性质化为,再利用增函数性质可求出结果.【小问1详解】因为是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购销合同模板合同格式模板
- 走进蒹葭大学语文的魅力解析
- 足球场建设施工方案招标
- 软件加密与解密开发合同
- 轻松让小学生喜欢上英语学习
- 连锁合作合同范例
- 酒店制服订购合同
- 采矿设备招标文件样本
- 重归正途重修保证书集锦
- 钢构件制作与建筑劳务分包合同
- 干接点输出模块说明书
- 清代官窑瓷器的装饰特色及文化传承研究共3篇
- 巨量合集全球simotion通讯ethernet
- 2023年社区退役军人服务站工作总结十三篇
- GB/T 20880-2018食用葡萄糖
- 《女生青春期教育》专题课件
- GB/T 10505.2-19893A分子筛磨耗率测定方法
- 气温的变化与分布课件
- 锤击桩旁站监理记录表
- 公司级新员工安全培训课件
- 第14课《背影》课件(共24张PPT) 部编版语文八年级上册
评论
0/150
提交评论