广东省深圳市第二高级中学2025届高一数学第一学期期末综合测试试题含解析_第1页
广东省深圳市第二高级中学2025届高一数学第一学期期末综合测试试题含解析_第2页
广东省深圳市第二高级中学2025届高一数学第一学期期末综合测试试题含解析_第3页
广东省深圳市第二高级中学2025届高一数学第一学期期末综合测试试题含解析_第4页
广东省深圳市第二高级中学2025届高一数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市第二高级中学2025届高一数学第一学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角是的内角,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分又不必要条件2.直线l过点A(3,4),且与点B(-3,2)的距离最远,则直线l的方程为()A.3x-y-5=0 B.3x-y+5=0C.3x+y+13=0 D.3x+y-13=03.已知,,,夹角为,如图所示,若,,且D为BC中点,则的长度为A. B.C.7 D.84.等于A. B.C. D.5.若角的终边上一点,则的值为()A. B.C. D.6.纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是(℃),空气的温度是(℃),经过t分钟后物体的温度T(℃)可由公式得出,如温度为90℃的物体,放在空气中冷却2.5236分钟后,物体的温度是50℃,若根据对数尺可以查询出,则空气温度是()A.5℃ B.10℃C.15℃ D.20℃7.函数的零点所在的区间是()A.(0,1) B.(1,2)C.(2,3) D.(3,4)8.已知全集,集合,集合,则为A. B.C. D.9.如图,在三棱锥中,,分别为AB,AD的中点,过EF的平面截三棱锥得到的截面为EFHG.则下列结论中不一定成立的是()A. B.C.平面 D.平面10.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行两步恰竿齐,五尺板高离地……”某教师根据这首词设计一题:如图,已知,,则弧的长()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若一扇形的圆心角为,半径为,则该扇形的面积为__________.12.已知函数,给出下列四个命题:①函数是周期函数;②函数的图象关于点成中心对称;③函数的图象关于直线成轴对称;④函数在区间上单调递增.其中,所有正确命题的序号是___________.13.函数在上为单调递增函数,则实数的取值范围是______14.在正方体ABCD-A1B1C1D1中,E、F是分别是棱A1B1、A1D1的中点,则A1B与EF所成角的大小为______15.《九章算术》是我国古代数学成就的杰出代表作,其中"方田"章给出了计算弧田面积时所用的经验公式,即弧田面积(弦×矢+矢2),弧田(如图)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”指圆弧顶到弦的距离(等于半径长与圆心到弦的距离之差),现有圆心角为2,半径为1米的弧田,按照上述经验公式计算所得弧田面积是_________平方米.(结果保留两位有效数字,参考数据:,)16.若,则实数____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.化简计算:(1)计算:;(2)化简:18.已知函数是定义在R上的奇函数(1)用定义法证明为增函数;(2)对任意,都有恒成立,求实数k的取值范围19.设在区间单调,且都有(1)求的解析式;(2)用“五点法”作出在的简图,并写出函数在的所有零点之和.20.已知全集,集合,.(1)若,求;(2)若,求实数的取值范围.21.已知函数,(且.)(1)求的定义域,并判断函数的奇偶性;(2)设,对于,恒成立,求实数m的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】在中,由求出角A,再利用充分条件、必要条件的定义直接判断作答.【详解】因角是的内角,则,当时,或,即不一定能推出,若,则,所以“”是“”的必要不充分条件.故选:C2、D【解析】由题意确定直线斜率,再根据点斜式求直线方程.【详解】由题意直线l与AB垂直,所以,选D.【点睛】本题考查直线斜率与直线方程,考查基本求解能力.3、A【解析】AD为的中线,从而有,代入,根据长度进行数量积的运算便可得出的长度【详解】根据条件:;故选A【点睛】本题考查模长公式,向量加法、减法及数乘运算,向量数量积的运算及计算公式,根据公式计算是关键,是基础题.4、A【解析】分析:由条件利用诱导公式、两角和差的余弦公式化简所给的式子,可得结果.详解:.故选:A.点睛:本题主要考查诱导公式、两角和差的余弦公式的应用,属于基础题.5、B【解析】由三角函数的定义即可得到结果.【详解】∵角的终边上一点,∴,∴,故选:B【点睛】本题考查三角函数的定义,考查诱导公式及特殊角的三角函数值,属于基础题.6、B【解析】依题意可得,即,即可得到方程,解得即可;【详解】:依题意,即,又,所以,即,解得;故选:B7、B【解析】先求得函数的单调性,利用函数零点存在性定理,即可得解.【详解】解:因为函数均为上的单调递减函数,所以函数在上单调递减,因为,,所以函数的零点所在的区间是.故选:B8、A【解析】,所以,选A.9、D【解析】利用线面平行的判定和性质对选项进行排除得解.【详解】对于,,分别为,的中点,,EF与平面BCD平行过的平面截三棱锥得到的截面为,平面平面,,,故AB正确;对于,,平面,平面,平面,故正确;对于,的位置不确定,与平面有可能相交,故错误.故选:D.【点睛】熟练运用线面平行的判定和性质是解题的关键.10、C【解析】求出长后可得,再由弧长公式计算可得【详解】由题意,解得,所以,,所以弧的长为故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用扇形的面积公式可求得结果.【详解】扇形的圆心角为,因此,该扇形的面积为.故答案:.12、①②③【解析】利用诱导公式化简函数,借助周期函数的定义判断①;利用函数图象对称的意义判断②③;取特值判断④作答.【详解】依题意,,因,是周期函数,是它的一个周期,①正确;因,,即,因此的图象关于点成对称中心,②正确;因,,即,因此的图象关于直线成轴对称,③正确;因,,,显然有,而,因此函数在区间上不单调递增,④不正确,所以,所有正确命题的序号是①②③.故答案为:①②③【点睛】结论点睛:函数的定义域为D,,(1)存在常数a,b使得,则函数图象关于点对称.(2)存在常数a使得,则函数图象关于直线对称.13、【解析】令∴即函数的增区间为,又函数在上为单调递增函数∴令得:,即,得到:,又∴实数的取值范围是故答案为14、【解析】解:如图,将EF平移到A1B1,再平移到AC,则∠B1AC为异面直线AB1与EF所成的角三角形B1AC为等边三角形,故异面直线AB1与EF所成的角60°,15、【解析】由题设可得“弦”为,“矢”为,结合弧田面积公式求面积即可.【详解】由题设,“弦”为,“矢”为,所以所得弧田面积是.故答案为:.16、5##【解析】根据题中条件,由元素与集合之间的关系,得到求解,即可得出结果.【详解】因为,所以,解得.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据指数运算法则、对数运算法则求得结果.(2)利用诱导公式化简,结合同角商数关系即可求解.【详解】(1);(2).18、(1)证明见解析(2)【解析】(1)根据函数单调性定义及指数函数的单调性与值域即可证明;(2)由已知条件,利用函数的奇偶性和单调性,可得对恒成立,然后分离参数,利用基本不等式求出最值即可得答案.【小问1详解】证明:设,则,由,可得,即,又,,所以,即,则在上为增函数;【小问2详解】解:因为任意,都有恒成立,且函数是定义在R上的奇函数,所以对恒成立,又由(1)知函数在上为增函数,所以对恒成立,由,有,所以对恒成立,设,由递减,可得,所以,当且仅当时取得等号,所以,即的取值范围是.19、(1)(2)图象见解析,所有零点之和为【解析】(1)依题意在时取最大值,在时取最小值,再根据函数在单调,即可得到,即可求出,再根据函数在取得最大值求出,即可求出函数解析式;(2)列出表格画出函数图象,再根据函数的对称性求出零点和;【小问1详解】解:依题意在时取最大值,在时取最小值,又函数在区间单调,所以,即,又,所以,由得,即,又因为,所以,,所以.【小问2详解】解:列表如下0001所以函数图象如下所示:由图知的一条对称轴为有两个实数根,记为,则由对称性知,所以所有实根之和为.20、(1);(2)或.【解析】(1)先求得集合A,当时,求得集合B,根据交集、补集运算的概念,即可得答案.(2)根据题意,可得,根据,可得或,即可得答案【详解】(1),当时,所以;(2)因为,所以,又因为,所以或,解得或.21、(1)定义域为;为奇函数;(2)【解析】(1)由函数的定义域满足,可得其定义域,由可判断其奇偶性.(2)先由对数型函数的定义域可得,当时,由对数函数的单调性可得在上恒

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论