




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届大连育明中学数学高二上期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式解集是A. B.C. D.2.为调查参加考试的高二级1200名学生的成绩情况,从中抽查了100名学生的成绩,就这个问题来说,下列说法正确的是()A.1200名学生是总体 B.每个学生是个体C.样本容量是100 D.抽取的100名学生是样本3.已知数列为等差数列,且成等比数列,则的前6项的和为A.15 B.C.6 D.34.若数列的前项和,则此数列是()A.等差数列 B.等比数列C.等差数列或等比数列 D.以上说法均不对5.下列说法中正确的是A.命题“若,则”的逆命题为真命题B.若为假命题,则均为假命题C.若为假命题,则为真命题D.命题“若两个平面向量满足,则不共线”的否命题是真命题.6.(5分)已知集合A={x|−2<x<4},集合B={x|(x−6)(x+1)<0},则A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|−2<x<−1} D.{x|−1<x<4}7.已知方程表示双曲线,则实数的取值范围是()A.或 B.C. D.8.已知点在抛物线的准线上,则该抛物线的焦点坐标是()A. B.C. D.9.如图,在四面体中,,,,D为BC的中点,E为AD的中点,则可用向量,,表示为()A. B.C. D.10.下列说法中正确的是()A.命题“若,则”的否命题是真命题;B.若为真命题,则为真命题;C.“”是“”的充分条件;D.若命题:“,”,则:“,”11.已知双曲线:的左、右焦点分别为,,过点且斜率为的直线与双曲线在第二象限的交点为,若,则双曲线的离心率是()A B.C. D.12.在复平面内,复数对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.已知直线(为常数)和圆,给出下列四个结论:①当变化时,直线恒过定点;②直线与圆可能无公共点;③若直线与圆有两个不同交点,,则线段的长的最小值为;④对任意实数,圆上都不存在关于直线对称的两个点.其中正确的结论是______.(写出所有正确结论的序号)14.已知是椭圆的两个焦点,分别是该椭圆的左顶点和上顶点,点在线段上,则的最小值为__________.15.已知椭圆方程为,左、右焦点分别为、,P为椭圆上的动点,若的最大值为,则椭圆的离心率为___________.16.如图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是_________(写出所有正确命题的编号).①当时,S为四边形;②当时,S为等腰梯形;③当时,S与的交点R满足;④当时,S为六边形;⑤当时,S的面积为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为,经过点的直线与抛物线交于两点,其中点A在第一象限;(1)若直线的斜率为,求的值;(2)求线段的长度的最小值18.(12分)已知函数,且(1)求曲线在点处的切线方程;(2)求函数在区间上的最小值19.(12分)已知等差数列的前项和为,,.(1)求的通项公式;(2)设数列的前项和为,用符号表示不超过x的最大数,当时,求的值.20.(12分)在平面直角坐标系xOy中,已知椭圆的左、右焦点分别是,,离心率,请再从下面两个条件中选择一个作为已知条件,完成下面的问题:①椭圆C过点;②以点为圆心,3为半径的圆与以点为圆心,1为半径的圆相交,且交点在椭圆C上(只能从①②中选择一个作为已知)(1)求椭圆C的方程;(2)已知过点的直线l交椭圆C于M,N两点,点N关于x轴的对称点为,且,M,三点构成一个三角形,求证:直线过定点,并求面积的最大值.21.(12分)已知点,(1)若过点P作的切线只有一条,求实数的值及切线方程;(2)过点P作斜率为1的直线l与相交于M,N两点,当面积最大时,求实数的值22.(10分)圆经过两点,且圆心在直线上.(1)求圆的方程;(2)求圆与圆的公共弦的长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设.由,得,故函数在上单调递减.由为奇函数,所以.不等式等价于,即,结合函数的单调性可得,从而不等式的解集为,故答案为B.考点:利用导数研究函数的单调性.【方法点晴】本题考查了导数的综合应用及函数的性质的应用,构造函数的思想,阅读分析问题的能力,属于中档题.常见的构造思想是使含有导数的不等式一边变为,即得,当是形如时构造;当是时构造,在本题中令,(),从而求导,从而可判断单调递减,从而可得到不等式的解集2、C【解析】根据总体、个体、样本容量、样本的定义,结合题意,即可判断和选择.【详解】根据题意,总体是名学生的成绩;个体是每个学生的成绩;样本容量是,样本是抽取的100名学生的成绩;故正确的是C.故选:C.3、C【解析】利用成等比数列,得到方程2a1+5d=2,将其整体代入{an}前6项的和公式中即可求出结果【详解】∵数列为等差数列,且成等比数列,∴,1,成等差数列,∴2,∴2=a1+a1+5d,解得2a1+5d=2,∴{an}前6项的和为2a1+5d)=故选C【点睛】本题考查等差数列前n项和求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用4、D【解析】利用数列通项与前n项和的关系和等差数列及等比数列的定义判断.【详解】当时,,当时,,当时,,所以是等差数列;当时,为非等差数列,非等比数列’当时,,所以是等比数列,故选:D5、D【解析】A中,利用四种命题的的真假判断即可;B、C中,命题“”为假命题时,、至少有一个为假命题;D中,写出该命题的否命题,再判断它的真假性【详解】对于A,命题“若,则”的逆命题是:若,则;因为也成立.所以A不正确;对于B,命题“”为假命题时,、至少有一个为假命题,所以B错误;C错误;对于D,“平面向量满足”,则不共线的否命题是,若“平面向量满足”,则共线;由知:,一定有,,所以共线,D正确.故选:D.【点睛】本题考查了命题的真假性判断问题,也考查了推理与判断能力,是基础题6、D【解析】由(x−6)(x+1)<0,得−1<x<6,从而有B={x|−1<x<6},所以A∩B={x|−1<x<4},故选D7、A【解析】根据双曲线标准方程的性质,列出关于不等式,求解即可得到答案【详解】由双曲线的性质:,解的或,故选:A8、C【解析】首先表示出抛物线的准线,根据点在抛物线的准线上,即可求出参数,即可求出抛物线的焦点.【详解】解:抛物线的准线为因为在抛物线的准线上故其焦点为故选:【点睛】本题考查抛物线的简单几何性质,属于基础题.9、B【解析】利用空间向量的基本定理,用,,表示向量【详解】因为是的中点,是的中点,,故选:B10、C【解析】A.写出原命题的否命题,即可判断其正误;B.根据为真命题可知的p,q真假情况,由此判断的真假;C.看命题“”能否推出“”,即可判断;D.根据含有一个量词的命题的否定的要求,即可判断该命题的正误.【详解】A.命题“若x=y,则sinx=siny”,其否命题为若“,则”为假命题,因此A不正确;B.命题“”为真命题,则p,q中至少有一个为真命题,当二者为一真一假时,为假命题,故B不正确C.命题“若,则”为真命题,故C正确;D.命题:“,”,为特称命题,其命题的否定:“,”,故D错误,故选:C11、B【解析】根据得到三角形为等腰三角形,然后结合双曲线的定义得到,设,进而作,得出,由此求出结果【详解】因为,所以,即所以,由双曲线的定义,知,设,则,易得,如图,作,为垂足,则,所以,即,即双曲线的离心率为.故选:B12、D【解析】根据复数在复平面内的坐标表示可得答案.【详解】解:由题意得:在复平面上对应的点为,该点在第四象限.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、③④【解析】由可判断①;根据直线过的定点在圆内可判断②;当直线与过圆心的直径垂直时,求出线段的长度可判断③;把圆心代入直线的方程可判断④.【详解】对于①,,当变化时,直线恒过定点,故错误;对于②,因为,所以在圆的内部,所以直线与圆总有公共点,故错误;对于③,当直线与过圆心的直径垂直时,线段的长度的最小,此时,故正确;对于④,把圆心代入直线,得对任意实数,圆上都不存在关于直线对称的两个点,故正确.故答案为:③④.14、【解析】由题可设,则,然后利用数量积坐标表示及二次函数的性质即得.【详解】由题可得,,设,因为点P在线段AB上,所以,∴,∴当时,的最小值为.故答案为:.15、【解析】利用椭圆的定义结合余弦定理可求得,再利用公式可求得该椭圆的离心率的值.【详解】由椭圆的定义可得,由余弦定理可得,因为的最大值为,则,可得,因此,该椭圆的离心率为.故答案为:.16、①②③⑤【解析】①由如图当点向移动时,满足,只需在上取点满足,即可得截面为四边形,如图所示,是四边形,故①正确;②当时,即为中点,此时可得PQ∥AD,AP=QD==,故可得截面APQD为等腰梯形,等腰梯形,故②正确;③当时,如图,延长至,使,连接交于,连接交于,连接,可证,由∽,可得,故可得,故③正确;④由③可知当时,只需点上移即可,此时的截面形状仍然如图所示的,如图是五边形,故④不正确;⑤当时,与重合,取的中点,连接,可证,且,可知截面为为菱形,故其面积为,如图是菱形,面积为,故⑤正确,故答案为①②③⑤考点:正方体的性质.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)3;(2)12.【解析】(1)联立直线l与抛物线C的方程,求出A和B的横坐标即可得AFBF(2)设直线l方程为,与抛物线C方程联立,求出线段AB长度求其最小值即可.【小问1详解】设,抛物线的焦点为,直线l经过点F且斜率,直线l的方程为,将直线l方程与抛物线消去y可得,点A是第一象限内的交点,解方程得,∴.【小问2详解】设,由题知直线l斜率不为0,故设直线l的方程为:,代入抛物线C的方程化简得,,∵>0,∴,∴,当且仅当m=0时取等号,∴AB长度最小值为12.18、(1)(2)【解析】(1)由题意,求出的值,然后根据导数的几何意义即可求解;(2)根据导数与函数单调性关系,判断函数在区间上的单调性,从而即可求解.【小问1详解】解:由题意,,因为,所以,解得,所以,,因为,,所以曲线在点处的切线方程为,即;【小问2详解】解:因为,,所以时,,时,,所以在上单调递减,在上单调递增,所以,即函数在区间上的最小值为.19、(1)(2)9【解析】(1)首先根据已知条件分别求出的首项和公差,然后利用等差数列的通项公式求解即可;(2)首先利用等差数列求和公式求出,然后利用裂项相消法和分组求和法求出,进而可求出的通项公式,最后利用等差数列求和公式求解即可.【小问1详解】不妨设等差数列的公差为,故,,解得,,从而,即的通项公式为.【小问2详解】由题意可知,,所以,故,因为当时,;当时,,所以,由可知,,即,解得,即值为9.20、(1)(2)证明见解析,【解析】(1)若选①,则由题意可得,解方程组求出,从而可求得椭圆方程,若选②,,再结合离心率和求出,从而可求得椭圆方程,(2)由题意设直线MN的方程为,设,,,将直线方程代入椭圆方程中,消去,再利用根与系数的关系,表示出直线的方程,令,求出,结合前面的式子化简可得线过的定点,表示出的面积,利用基本不等式可求得其最大值【小问1详解】若选①:由题意知,∴.所以椭圆C的方程为.若选②:设圆与圆相交于点Q.由题意知:.又因为点Q在椭圆上,所以,∴.又因为,∴,∴.所以椭圆C的方程为.【小问2详解】由题易知直线MN斜率存在且不为0,因为,故设直线MN方程为,设,,,∴,∴,,因为点N关于x轴对称点为,所以,所以直线方程为,令,∴.又,∴.所以直线过定点,∴.当且仅当,即时,取等号.所以面积的最大值为.21、(1);当时,切线方程为;当时,切线方程为;(2)或【解析】(1)根据题意可知P在圆上,据此即可求t和切线方程;(2)的面积,则当面积最大时,.即,据此即可求出圆心O到直线l的距离,即可求出t的数值.【小问1详解】由题意得点在上,∴,,①当时,切点,直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 核电池行业商业计划书
- 2025年超临界CO2萃取装置膜生物反应器及其他项目可行性分析报告
- 招标文件里合同协议书
- 短期投资合同协议书范本
- 劳动合同返聘协议书
- 德州5G+文化旅游项目商业计划书
- 一起肉鸡传染性支气管炎和大肠杆菌病混合发病的诊治
- 烧烤学徒合同协议书范本
- 2025年软管隔膜活塞泵市场分析报告
- 中医远程医疗运营方案
- 古希腊文明智慧树知到期末考试答案章节答案2024年复旦大学
- 2024年广东省广州市天河区七年级(下)期末数学试卷含答案
- DZ∕T 0399-2022 矿山资源储量管理规范(正式版)
- 离婚纠纷-模拟法庭剧本
- 管培生(校招生)培养方案(计划)落地完整版
- MOOC 计算机系统局限性-华东师范大学 中国大学慕课答案
- 六年级语文总复习课《修改病句》修改课件市公开课一等奖省赛课获奖课件
- 位置度公差及其计算课件
- SJ-T 11841.2.2-2022 显示系统视觉舒适度 第2-2部分:平板显示-蓝光测量方法
- 门诊护士培训课件
- 2024年中国检验认证集团福建有限公司招聘笔试参考题库含答案解析
评论
0/150
提交评论