广东省普宁第二中学2025届高二上数学期末质量检测模拟试题含解析_第1页
广东省普宁第二中学2025届高二上数学期末质量检测模拟试题含解析_第2页
广东省普宁第二中学2025届高二上数学期末质量检测模拟试题含解析_第3页
广东省普宁第二中学2025届高二上数学期末质量检测模拟试题含解析_第4页
广东省普宁第二中学2025届高二上数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省普宁第二中学2025届高二上数学期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在直三棱柱中,AB=BC,,若棱上存在唯一的一点P满足,则()A. B.1C. D.22.已知等差数列的前项和为,,公差,.若取得最大值,则的值为()A.6或7 B.7或8C.8或9 D.9或103.下列说法或运算正确的是()A.B.用反证法证明“一个三角形至少有两个锐角”时需设“一个三角形没有锐角”C.“,”的否定形式为“,”D.直线不可能与圆相切4.已知等差数列的公差为,则“”是“数列为单调递增数列”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.经过点A(0,-3)且斜率为2的直线方程为()A. B.C. D.6.若直线与圆相切,则()A. B.或2C. D.或7.已知圆M的圆心在直线上,且点,在M上,则M的方程为()A. B.C. D.8.是首项和公差均为3的等差数列,如果,则n等于()A.671 B.672C.673 D.6749.已知,则下列三个数,,()A.都不大于-4 B.至少有一个不大于-4C.都不小于-4 D.至少有一个不小于-410.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由附表:0.0500.0100.0013.8416.63510.828参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”11.在平面区域内随机投入一点P,则点P的坐标满足不等式的概率是()A. B.C. D.12.已知三棱锥的各顶点都在同一球面上,且平面,若该棱锥的体积为,,,,则此球的表面积等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数f(x)=x3-3x2+2,则函数f(x)的极大值为______14.数学中有许多形状优美、寓意美好的曲线,曲线就是其中之一(如图),给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过;③曲线C所围成的“心形”区域的面积小于3;其中,所有正确结论的序号是________15.已知函数的单调递减区间是,则的值为______.16.已知等差数列满足,,,则公差______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数f(x)=(1)求函数f(x)在x=1处的切线方程;(2)求证:18.(12分)设函数过点(1)求函数的单调区间和极值(要列表);(2)求函数在上的最大值和最小值.19.(12分)如图所示,平面ABCD,四边形AEFB为矩形,,,(1)求证:平面ADE;(2)求平面CDF与平面AEFB所成锐二面角的余弦值20.(12分)已知圆C的圆心在直线上,且过点,(1)求圆C的方程;(2)过点作圆C的切线,求切线的方程21.(12分)已知,两地的距离是.根据交通法规,,两地之间的公路车速(单位:)应满足.假设油价是7元/,以的速度行驶时,汽车的耗油率为,当车速为时,汽车每小时耗油,司机每小时的工资是91元.(1)求的值;(2)如果不考虑其他费用,当车速是多少时,这次行车的总费用最低?22.(10分)已知等比数列{an}中,a1=1,且2a2是a3和4a1的等差中项.数列{bn}满足b1=1,b7=13,且bn+2+bn=2bn+1.(1)求数列{an}的通项公式;(2)求数列{an+bn}前n项和Tn.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】设,构建空间直角坐标系,令且,求出,,再由向量垂直的坐标表示列方程,结合点P的唯一性有求参数a,即可得结果.【详解】由题设,构建如下图空间直角坐标系,若,则,,且,所以,,又存在唯一的一点P满足,所以,则,故,可得,此时,所以.故选:D2、B【解析】根据题意可知等差数列是,单调递减数列,其中,由此可知,据此即可求出结果.【详解】在等差数列中,所以,所以,即,又等差数列中,公差,所以等差数列是单调递减数列,所以,所以等差数列的前项和为取得最大值,则的值为7或8.故选:B.3、D【解析】对于A:可以解决;对于B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”;对于C:全称否定必须是全部否定;对于D:需要观察出所给直线是过定点的.【详解】A:,故错误;B:“一个三角形至少由两个锐角”的反面是“只有一个锐角或没有锐角”,所以用反证法时应假设只有一个锐角和没有锐角两种情况,故错误;C:的否定形式是,故错误;D:直线是过定点(-1,0),而圆,圆心为(2,0),半径为4,定点(-1,0)到圆心的距离为2-(-1)=3<4,故定点在圆内,故正确;故选:D.4、C【解析】利用等差数列的定义和数列单调性的定义判断可得出结论.【详解】若,则,即,此时,数列为单调递增数列,即“”“数列为单调递增数列”;若等差数列为单调递增数列,则,即“”“数列为单调递增数列”.因此,“”是“数列为单调递增数列”的充分必要条件.故选:C.5、A【解析】直接代入点斜式方程求解即可详解】因为直线经过点且斜率为2,所以直线的方程为,即,故选:6、D【解析】根据圆心到直线的距离等于半径列方程即可求解.【详解】由圆可得圆心,半径,因为直线与圆相切,所以圆心到直线的距离,整理可得:,所以或,故选:D.7、C【解析】由题设写出的中垂线,求其与的交点即得圆心坐标,再应用两点距离公式求半径,即可得圆的方程.【详解】因为点,在M上,所以圆心在的中垂线上由,解得,即圆心为,则半径,所以M的方程为故选:C8、D【解析】根据题意,求得数列的通项公式,代入数据,即可得答案.【详解】因为数列为等差数列,所以,令,解得.故选:D9、B【解析】利用反证法设,,都大于,结合基本不等式即可得出结论.【详解】设,,都大于,则,由于,故,利用基本不等式可得,当且仅当时等号成立,这与假设所得结论矛盾,故假设不成立,故下列三个数,,至少有一个不大于,故选:B.10、A【解析】由,而,故由独立性检验的意义可知选A11、A【解析】根据题意作出图形,进而根据几何概型求概率的方法求得答案.【详解】根据题意作出示意图,如图所示:于,所求概率.故选:A.12、D【解析】由条件确定三棱锥的外接球的球心位置及球的半径,再利用球的表面积公式求外接球的表面积.【详解】由已知,,,可得三棱锥的底面是直角三角形,,由平面可得就是三棱锥外接球的直径,,,即,则,故三棱锥外接球的半径为,所以三棱锥外接球的表面积为故选:D.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】利用导数研究函数的单调区间,从而得到极大值.【详解】,令,解得:,00极大值极小值所以当时,函数取得极大值,即函数的极大值为.故答案为:14、①②【解析】先根据图像的对称性找出整点,再判断是否还有其他的整点在曲线上;找出曲线上离原点距离最大的点的区域,再由基本不等式得到最大值不超过;在心形区域内找到一个内接多边形,该多边形的面积等于3,从而判断出“心形”区域的面积大于3.【详解】①:由于曲线,当时,;当时,;当时,;由于图形的对称性可知,没有其他的整点在曲线上,故曲线恰好经过6个整点:,,,,,,所以①正确;②:由图知,到原点距离的最大值是在时,由基本不等式,当时,,所以即,所以②正确;③:由①知长方形CDFE的面积为2,三角形BCE的面积为1,所以曲线C所围成的“心形”区域的面积大于3,故③错误;故答案为:①②.【点睛】找准图形的关键信息,比如对称性,整点,内接多边形是解决本题的关键.15、【解析】先求出,由题设易知是的解集,利用根与系数关系求m、n,进而求的值.【详解】由题设,,由单调递减区间是,∴的解集为,则是的解集,∴,可得,故.故答案为:16、2【解析】根据等差数列性质求得,再根据题意列出相关的方程组,解得答案.【详解】为等差数列,故由可得:,即,故,故,所以,解得,故答案为:2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)y=5x-1;(2)证明见解析【解析】(1)求出导函数,求出切线的斜率,切点坐标,然后求切线方程(2)不等式化简为.设,求出导函数,判断函数的单调性求解函数的最值,然后证明即可【详解】解:(1)的定义域为,的导数由(1)可得,则切点坐标为,所求切线方程为(2)证明:即证.设,则,由,得当时,;当时,在上单调递增,在上单调递减,(1),即不等式成立,则原不等式成立18、(1)增区间,,减区间,极大值,极小值(2)最大值,最小值【解析】(1)将点代入函数解析式即可求得a,对函数求导,分析导函数的正负,确定单调区间及极值;(2)分析函数在此区间上的单调性,由极值、端点值确定最值.【小问1详解】∵点在函数的图象上,∴,解得,∴,∴,当或时,,单调递增;当时,,单调递减;当变化时,的变化情况如下表:00极大值极小值∴当时,有极大值,且极大值为,当时,有极小值,且极小值为,所以的单调递增区间为和,单调递减区间为,极大值为,极小值为;【小问2详解】由(1)可得:函数在区间上单调递减,在区间上单调递增.∴,又,,∴19、(1)见解析(2)【解析】(1)根据,,从而证明平面平面ADE,从而平面ADE。(2)以A为坐标原点,建立空间直角坐标系,写出点的空间坐标,根据向量法求解即可。【详解】(1)∵四边形ABEF为矩形又平面ADE,AE平面ADE平面ADE又,同理可得:平面ADE又,BF,BC平面BCF∴平面平面ADE又CF平面BCF平面ADE(2)如图,以A为坐标原点,建立空间直角坐标系,则,,,,设是平面CDF的一个法向量,则即令,解得又是平面AEFB的一个法向量,∴平面CDF与平面AEFB所成锐二面角的余弦值为.【点睛】此题考查立体几何线面平行证明和二面角求法,线面平行可先证面面平行得到,属于简单题目。20、(1)(2)或【解析】(1)由圆心在直线上,设,由点在圆上,列方程求,由此求出圆心坐标及半径,确定圆的方程;(2)当切线的斜率存在时,设其方程为,由切线的性质列方程求,再检验直线是否为切线,由此确定答案.小问1详解】因为圆C的圆心在直线上,设圆心的坐标为,圆C过点,,所以,即,解得,则圆心,半径,所以圆的方程为;【小问2详解】当切线的斜率存在时,设直线的方程为,即,因为直线和圆相切,得,解得,所以直线方程为,当切线的斜率不存在时,易知直线也是圆的切线,综上,所求的切线方程为或21、(1);(2).【解析】(1)根据题中给出的车速和油耗之间的关系式,结合已知条件,待定系数即可;(2)根据题意求得以行驶所用时间,构造费用关于的函数,利用导数研究其单调性和最值,即可求得结果.【小问1详解】因为汽车以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论