会计数据分析 Solutions-Manual Chapter-3-EOC-SM-Updated_第1页
会计数据分析 Solutions-Manual Chapter-3-EOC-SM-Updated_第2页
会计数据分析 Solutions-Manual Chapter-3-EOC-SM-Updated_第3页
会计数据分析 Solutions-Manual Chapter-3-EOC-SM-Updated_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

SolutionsManual–Chapter3

SolutionstoDiscussionQuestions

Whatisthedifferencebetweenatargetandaclass?

Atargetisaspecificattributeorvaluethatananalystistryingtoevaluate,suchasaninterestrateorscore.Aclassisacategoryorgroupingthatadataobjectisassignedto,suchasfraudornotfraud.

Whatisthedifferencebetweenasupervisedandanunsupervisedapproach?

Thesupervisedapproachreliesonananalysisofpastdatatopredicttheclassassignmentorregressedvalueforanewunknownobservation.Classificationandregressionarepopularsupervisedmodels.Anunsupervisedapproachisusedtoexploredataanddiscoverpreviously-unknownpatterns.Clusteringandprofilingarecommonunsupervisedmodelsthathelpresearchersidentifygroupsofdatathatmaynotbeobvious.

Whatisthedifferencebetweentrainingdatasetsandtest(ortesting)datasets?

Supervisedmodelsrelyonpreviously-analyzedhistoricaldatatopredictfutureoutcomes.Forexample,anauditormayidentifyfraudulenttransactionsandlabelthoseasfraud.Aportionofthatdataisusedtotrainthemodel,meaningthatatoolanalyzesthehistoricaltrainingdataandtriestoidentifytheattributesthatarethebestpredictorsofaclassorvalue.Oncethemodelhasbeendeveloped,anotherportionofthehistoricaldataisusedtotestthemodeltoseewhichvaluethemodelpredictsforthatdata.Thetoolthencomparesthepredictedvaluesinthetestdatasetstotheactualvaluesinthetestdatasettoevaluatethemodelforaccuracy.Asetofhistoricaldatacanbesplitmanywaysintotrainingandtestingdatasets.

UsingFigure3-5asaguide,whatarethreedataapproachesassociatedwiththesupervisedapproach?

Classification,Causalmodeling,andregression.

UsingFigure3-5asaguide,whatarethreedataapproachesassociatedwiththeunsupervisedapproach?

Profiling,co-occurrencegrouping,andclustering.

Howmightthedatareductionapproachbeusedinauditing?

Onceanauditorhasidentifiedtypesofdatathatarehighrisk(e.g.transactionsonweekends,vendorswithP.O.Boxaddresses)theymayfilterthedatatoshowonlythosetypesoftransactions(basedonthedate,oraddressfieldinthiscase).

Alsomentionedinthechapterarefilteringonsuspiciousvendornames,sequencechecks,andgapdetection.

Howmightclassificationbeusedinapprovingordenyingapotentialfraudulentcreditcardtransaction?

Inthisanalysis,theclassassignedtoaspecificcreditcardtransactionwouldbeeither“fraud”or“notfraud”.Historicalrecordswouldbeassignedoneofthesetwoclasses,basedoncustomerclaims,etc.Aclassificationmodelwouldusepartofthishistoricaldatatotrainamodeltoidentifytheattributesthatarethebestpredictersofafraudulenttransaction.Thentheremainingdatawouldbeusedtovalidatethemodelandtestforaccuracy.

Howissimilaritymatchingdifferentfromclustering?

Similaritymatchinghasaspecificgoalinmind,suchastryingtofindcustomerswhoarelikeyourbestcustomers.Inthiscase,wehaveaspecifictargetandaretryingtolocatesimilarobjects.Clusteringisanattempttofindnaturalgroupingswithoutbeingdrivenbyaspecificpurpose.Clusteringismoreexploratorywheresimilaritymatchingassumesyouknowwhatyou’relookingfor.

Howdoesfuzzymatchwork?Giveanaccountingsituationwhereitmightbemostuseful?

Afuzzymatchusesprobabilitytoshowlikelymatches,basedonhowmuchthetwovalueshaveincommon.Forexample,tworecordsthatcontainaddresseswithsomedefinedpercentageofmatchingcharacterswouldbeconsideredafuzzymatch.Thisallowsauditorstofindrecordsthatapproximateeachotherinthecasewhereanemployeemighttrytoconcealaconnectionbyvaryingthevaluestoavoidexactmatches.

Compareandcontrasttheprofilingdataapproachandthedevelopmentofstandardcostforaunitofproductionatamanufacturingcompany?Aretheysubstantiallythesameordotheyhavedifferences?

Dataprofilingmaybeusedtodetermineproductioncostandvolumebehaviortodetermineabenchmarkforfuturecostandvolume.Thisislikewhatamanagerofamanufacturingcompanydoesindeterminingstandardcostforaunitofproduction.Theyareverysimilarinthatthegoalistocalculateabenchmarkforcontrollingpurposes.

Themaindifferencesisthatdataprofilingcanincorporatealargeramountofdata(suchasmarkettrends,changingfuelprices,orweatherpatterns)toautomaticallygenerateandcontinuallyupdateamoreprecisebenchmark.

Figures3-1through3-4suggestthatvolumeanddistancearethebestpredictorsof“daystoship”forawholesalecompany?Anyothervariablesthatwouldalsobeusefulinpredictingthenumberof“daystoship”?

Answersvary,butsomesuggestedvariablesmightbenumberofemployeesworking,dayoftheweek,logisticscapacity,temperature,etc.

SolutionstoProblems

Relatedpartytransactionsinvolvepeoplewhohaveclosetiestoanorganization,suchasboardmembers.Assumeanaccountingmanagerdecidesthatfuzzymatchingwouldbeausefultechniquetofindundisclosedrelatedpartytransactions.Whatdatawouldthemanagerneedtotestforrelatedpartytransactions?Whatwouldtheprocesslooklike?

Toperformfuzzymatching,themanagerwouldneedalistofrelatedpartiesandtheircontactinformation.Additionally,shewouldneedthecontactinformationforvendorsandcustomersthatparticipateincompanytransactions.

Themanagerwouldjointherelatedpartycontacttablewiththevendorand/orcustomercontactinformation.Sinceitislikelythattheaddresseswillbesimilarbutnotexact,usingthefuzzymatchtoolinExcelorIDEAwouldhavethemanagerselectthesimilarfields,inthiscaseaddressandzipcode.Themanagerwouldthenreviewthetransactionsthatinvolvevendorsorcustomersthatmatchtoseeiftheyarerelatedpartytransactions.

Anauditoristryingtofigureoutiftheinventoryatanelectronicsstorechainisobsolete.Whatcharacteristicsmightbeusedtohelpestablishamodelpredictinginventoryobsolescence?

Answersmayvary.Theauditormaylookatsimplemetricssuchastheageoftheinventory(e.gbasedonpurchasedate),orratios(e.g.turnoverforspecificproducts).Ifthereisarecordofinventorythathasbeendeemedobsoleteinthepast,theauditorsmaybeabletodevelopamodelbasedoncharacteristicsofthoseitems(e.g.size,type,manufacturer).Aclassificationmodelwoulddeterminetheprobabilityofwhichitemsareobsoleteornotobsoleteandcouldbeusedtoevaluateaclient’scompleteinventory.

Anauditoristryingtofigureoutifthegoodwillitsclientrecognizedwhenitpurchasedafactoryhasbecomeimpaired.Whatcharacteristicsmightbeusedtohelpestablishamodelpredictinggoodwillimpairment?

Goodwillimpairmentiscalculatedusingatwo-steptest.Firsttheauditormustdeterminewhetherthegoodwillisimpairedbycomparingthebookvaluewiththefairvalue.Thentheauditormustcalculatetheimpliedfairvalueofgoodwillandcollectevidenceastowhethermanagementrecordedtheimpairment.

Amodelwouldneedtolookatbothquestionsbasedoninput(e.g.accountbalances)fromthegeneralledgeranddeterminantsoffairvalue(e.g.marketdata,assessmentdata).Tocreateatrulypredictivemodel,theauditorwouldcollectdataonimpairmentfromotherclientsandusethoseobservationstobuildamodelthatcouldbeusedtopredictwhetheranewclientisalsoimpaired.

Thisprovidesaninterestingdiscussiononprivacyconcerns.Forexample,wouldaclientbewillingtosharedatathatcouldbeusedtobuildamodelfortheauditors?Mostlikely,no.Couldtheauditorbuildamodeliftheirclienthadmultipleacquireddivisionswithahistoryofimpairment?Probably,yes,buttheremaynotbesufficientobservationstomakeanaccurateenoughprediction.

Howmightclusteringbeusedtoexplaincustomersthatoweusmoney(accountsreceivable)?

Oneformofclusteringthatisalreadyusedforaccountsreceivableistheagingofaccounts.Theaginggroupsaccountsbyhowoldthereceivableis,withtheexpectationthatolderaccountsarelesslikelytobecollected.

Agingreliesononlyonedimension,time,andfocusesonthetransaction,notthecustomer.Clusteringmaybeusefulindeterminingwhethercustomersformnaturalgroupingsrelativetotheirabilitytopaytheirbills,basedoncorrelatedattributes,suchaslocation,size,volumeoforders.

Ifwehavegooddatathatshowswhichcustomershavehadaccountswrittenoff,wemayexpandthismodeltopredictthelikelihoodofnonpaymentbyusingaclassificationmodel.

Whywouldtheuseofdatareductionbeusefultohighlightrelatedpartytransactions(e.g.,CEOhasherownseparatecompanythatthemaincompanydoesbusinesswith)?

Answerswillvary.Datareductioncanbeusedtofiltertransactionsonspecificattributes.Byremovingunrelatedtransactionsfromtheanalysis,managementoranauditorcouldclearlyseethescopeandvolumeoftransactionsandeitheracceptthosewithadisclosureormakearecommendationtoimplementbetterinternalcontrolstopreventthemfromoccurring.

HowcouldXBRLbeusedbyaninvestortodoananalysisoftheindustry’sinventoryturnover?

AssumingXBRLdataisvalidandaccurate,aninvestorwouldidentifyspecificaccounttags(e.g.InventoryNet,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论