版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页陕西省宝鸡市清姜路中学2024年数学九年级第一学期开学质量检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在下面的汽车标志图形中,是中心对称图形但不是轴对称图形有()A.2个B.3个C.4个D.5个2、(4分)一个多边形的边数增加2条,则它的内角和增加()A.180° B.90° C.360° D.540°3、(4分)为了解某社区居民的用水情况,随机抽取20户居民进行调查,下表是所抽查居民2018年5月份用水量的调查结果:那么关于这次用水量的调查和数据分析,下列说法错误的是()居民(户数)128621月用水量(吨)458121520A.中位数是10(吨) B.众数是8(吨)C.平均数是10(吨) D.样本容量是204、(4分)在平面直角坐标系中,把直线y=2x向左平移1个单位长度,平移后的直线解析式是()A.y=2x+1 B.y=2x﹣1 C.y=2x+2 D.y=2x﹣25、(4分)在下列图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.6、(4分)下列二次根式中,与是同类二次根式的是A. B. C. D.7、(4分)点P(2,5)经过某种图形变化后得到点Q(﹣2,5),这种图形变化可以是()A.关于x轴对称 B.关于y轴对称C.关于原点对称 D.上下平移8、(4分)某校八年级有452名学生,为了了解这452名学生的课外阅读情况,从中抽取50名学生进行统计.在这个问题中,样本是()A.452名学生 B.抽取的50名学生C.452名学生的课外阅读情况 D.抽取的50名学生的课外阅读情况二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,直线y=-x+4分别与x轴,y轴交于点A,B,点C在直线AB上,D是y轴右侧平面内一点,若以点O,A,C,D为顶点的四边形是菱形,则点D的坐标是_______________.10、(4分)已知△ABC的各边长度分别为3cm、4cm、5cm,则连结各边中点的三角形的周长为_____.11、(4分)如图所示,在ΔABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥EC;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是____(只填写序号).
12、(4分)如图,在△ABC中,AC=BC=9,∠C=120°,D为AC边上一点,且AD=6,E是AB边上一动点,连接DE,将线段DE绕点D逆时针旋转30°得到DF,若F恰好在BC边上,则AE的长为_____.13、(4分)如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__________.三、解答题(本大题共5个小题,共48分)14、(12分)先化简,再求值:,其中.15、(8分)如图,在△ABC中,AB=AC,点,在边上,.求证:.16、(8分)解方程:(1)x2-4x=3(2)x2-4=2(x+2)17、(10分)在学校组织的八年级知识竞赛中,每班参加比赛的人数相同,成绩分为、、、四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)求一班参赛选手的平均成绩;(2)此次竞赛中,二班成绩在级以上(包括级)的人数有几人?(3)求二班参赛选手成绩的中位数.18、(10分)如图,矩形ABCD和正方形ECGF,其中E、H分别为AD、BC中点,连结AF、HG、AH.(1)求证:;(2)求证:;B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如果乘坐出租车所付款金额(元)与乘坐距离(千米)之间的函数图像由线段、线段和射线组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为__________元.20、(4分)如图,已知二次函数y=ax2+bx+c的图象经过点A(3,0),对称轴为直线x=1,则点B的坐标是_____.21、(4分)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.22、(4分)在结束了初中阶段数学内容的新课教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制了如图所示的扇形统计图,则唐老师安排复习“统计与概率”内容的时间为______课时.23、(4分)若有意义,则的取值范围是_______二、解答题(本大题共3个小题,共30分)24、(8分)解不等式组,并将解集在数轴上表示出来.25、(10分)先化简,再求值:,其中x=.26、(12分)计算:9-7+5.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】第2个、第5个是中心对称图形,不是轴对称图形,共2个故选B.2、C【解析】
根据n边形的内角和定理即可求解.【详解】解:原来的多边形的边数是n,则新的多边形的边数是n+1.(n+1﹣1)•180﹣(n﹣1)•180=360°.故选:C.本题主要考查了多边形的内角和定理,多边形的边数每增加一条,内角和就增加180度.3、A【解析】
根据中位数、众数、平均数和样本容量的定义对各选项进行判断.【详解】解:这组数据的中位数为8(吨),众数为8(吨),平均数=(1×4+2×5+8×8+6×12+2×15+1×1)=10(吨),样本容量为1.故选:A.本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了平均数和中位数.4、C【解析】试题分析:函数图像的平移法则为:上加下减,左加右减,则直线y=2x向左平移1个单位后的直线解析式为:y=2(x+1)=2x+2.5、C【解析】
根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A.不是轴对称图形,是中心对称图形,不合题意;B.是轴对称图形,不是中心对称图形,不合题意;C.是轴对称图形,也是中心对称图形,符合题意;D.不是轴对称图形,是中心对称图形,不合题意,故选C.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、D【解析】
首先把四个选项中的二次根式化简,再根据同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式可得答案.【详解】解:A、与不是同类二次根式;B、与不是同类二次根式;C、与不是同类二次根式;D、与是同类二次根式;故选:D.此题主要考查了同类二次根式,关键是掌握同类二次根式的定义.7、B【解析】
根据平面内两点关于y轴对称的点,横坐标互为相反数,纵坐标不变从而得出结论【详解】∵点P(2,5)经过某种图形变化后得到点Q(﹣2,5),∴这种图形变化可以是关于y轴对称.故选B.此题主要考查平面内两点关于y轴对称的点坐标特征8、D【解析】
根据样本是总体中所抽取的一部分个体,可得答案.【详解】解:为了了解这452名学生的课外阅读情况,从中抽取50名学生进行统计,在这个问题中,样本是从中抽取的50名学生的课外阅读情况.故选:D.本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.二、填空题(本大题共5个小题,每小题4分,共20分)9、(2,−2)或(6,2).【解析】
设点C的坐标为(x,-x+4).分两种情况,分别以C在x轴的上方、C在x轴的下方做菱形,画出图形,根据菱形的性质找出点C的坐标即可得出D点的坐标.【详解】∵一次函数解析式为线y=-x+4,令x=0,解得y=4∴B(0,4),令y=0,解得x=4∴A(4,0),如图一,∵四边形OADC是菱形,设C(x,-x+4),∴OC=OA=,整理得:x2−6x+8=0,解得x1=2,x2=4,∴C(2,2),∴D(6,2);如图二、如图三,∵四边形OADC是菱形,设C(x,-x+4),∴AC=OA=,整理得:x2−8x+12=0,解得x1=2,x2=6,∴C(6,−2)或(2,2)∴D(2,−2)或(−2,2)∵D是y轴右侧平面内一点,故(−2,2)不符合题意,故答案为(2,−2)或(6,2).本题考查了一次函数图象上点的坐标特征以及菱形的性质,解题的关键是确定点C、D的位置.本题属于中档题,难度不大,在考虑菱形时需要分类讨论.10、6cm【解析】
根据题意画出图形,然后可以发现新的三角形的三条边为原三角形的三条中位线,运用中位线即可快速作答.【详解】解::如图,D,E,F分别是△ABC的三边的中点,
则DE=AC,DF=BC,EF=AB.
∴△DEF的周长=DE+DF+EF=(AC+BC+AB)=6cm.本题的关键在于画出图形,对于许多几何题,试题本身没有图,画出图形可以帮助思维,利用寻找解题思路.11、③【解析】分析:根据点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,即可证明四边形BECF是平行四边形,然后根据菱形的判定定理即可作出判断.详解:∵BD=CD,DE=DF,∴四边形BECF是平行四边形,①BE⊥EC时,四边形BECF是矩形,不一定是菱形;②AB=AC时,∵D是BC的中点,∴AF是BC的中垂线,∴BE=CE,∴平行四边形BECF是菱形.③四边形BECF是平行四边形,则BF∥EC一定成立,故不一定是菱形;故答案是:②.点睛:本题考查了菱形的判定方法,菱形的判别常用三种方法:①定义;②四边相等;③对角线互相垂直平分.12、3+4【解析】
由∠C=120°,AC=BC可知∠A=30°,又有∠EDF=30°,联想一线三等角模型,延长DC到G,使DG=AE,得ΔDFG≅ΔEDA,进而可得GF=6,∠G=30°,由于∠FCG=60°,即可得ΔCFG是直角三角形,易求CG,由DG=AE即可解题.【详解】解:如图,延长DC到G,使DG=AE,连接FG,∵AC=BC,∠C=120°,∴∠A=30°,∠FCG=60°,∵∠A+∠1=∠EDF+∠2,又∵∠EDF=30°,∴∠1=∠2,在ΔEDA和ΔDFG中,AE=GD∠1=∠2∴ΔEDA≅ΔDFG(SAS)∴AD=GF=6,∠A=∠G=30°,∵∠G+∠FCG=90°,∴∠CFG=90°,设CF=x,则CG=2x,由CFx2解得x1=23∴CG=43∴AE=DG=3+43故答案为:3+43本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质和等腰直角三角形的性质.本题解题关键是通过一线三等角模型构造全等三角形,从而得到RtΔ13、【解析】
根据题意可得阴影部分的面积等于△ABC的面积,因为△ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.【详解】设AP,EF交于O点,∵四边形ABCD为菱形,∴BC∥AD,AB∥CD.∵PE∥BC,PF∥CD,∴PE∥AF,PF∥AE.∴四边形AEFP是平行四边形.∴S△POF=S△AOE.即阴影部分的面积等于△ABC的面积.∵△ABC的面积等于菱形ABCD的面积的一半,菱形ABCD的面积=ACBD=5,∴图中阴影部分的面积为5÷2=.三、解答题(本大题共5个小题,共48分)14、;【解析】
首先将括号里面的分式进行通分,然后将各分式的分子和分母进行因式分解,然后进行乘除法计算,最后将a的值代入化简后的式子进行计算.【详解】解:原式=当a=时,原式=.本题考查分式的化简求值.15、见解析【解析】试题分析:证明△ABE≌△ACD即可.试题解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD,∴BD=CE,法2:如图,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF-DF=CF-EF,即BD=CE.16、(1)x1=,x2=(2)x1=-2,x2=4【解析】
(1)观察方程的特点:二次项系数为1,一次项系数为4,因此利用配方法解方程;(2)观察方程的左边可以利用平方差公式分解因式,此时方程两边都含有公因式(x+2),因此利用因式分解法解方程.【详解】(1)解:配方得,x2-4x+4=3+4(x-2)2=7解之:x-2=±∴x1=,x2=;(2)解:(x+2)(x-2)-2(x+2)=0(x+2)(x-2-2)=0∴x+2=0或x-4=0解之:x1=-2,x2=4.本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法解一元二次方程.17、(1)分;(2)人;(3)80分【解析】
(1)根据算术平均数的定义列式计算可得;
(2)总人数乘以A、B、C等级所占百分比即可;
(3)根据中位数的定义求解即可.【详解】解:(1)一班参赛选手的(分)(2)二班成绩在级以上(含级)(人)(3)二班、人数占,参赛学生共有20人,因此中位数落在C级,二班参赛选手成绩的中位数为80分.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.18、(1)详见解析;(2)详见解析.【解析】
(1)根据题意可先证明四边形AHCE为平行四边形,再根据正方形的性质得到∴,,故可证明四边形AHGF是平行四边形,即可求解;(2)根据四边形AHGF是平行四边形,得,根据四边形ABCD是矩形,可得,再根据平角的性质及等量替换即可证明.【详解】(1)证明:∵四边形ABCD是矩形,且E、H分别为AD、BC的中点,∴,,∴四边形AHCE为平行四边形,∴,,又∵四边形ECGF为正方形,∴,,∴,,∴四边形AHGF是平行四边形,∴;(2)证明:∵四边形AHGF是平行四边形,∴,∵四边形ABCD是矩形,∴,∴,又∵,∴;此题主要考查正方形的性质与证明,解题的关键是熟知特殊平行四边形的性质定理.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】
根据图象可知,8(千米)处于图中BC段,用待定系数法求出线段BC的解析式,然后令求出相应的y的值即可.【详解】根据图象可知位于线段BC上,设线段BC的解析式为将代入解析式中得解得∴线段BC解析式为,当时,,∴乘坐该出租车8(千米)需要支付的金额为1元.故答案为:1.本题主要考查一次函数的实际应用,掌握待定系数法是解题的关键.20、(﹣1,0).【解析】
根据点B与点A关于直线x=1对称确定点B的坐标即可.【详解】∵二次函数y=ax2+bx+c的图象与x轴交于A,B两点,∴点A与点B关于直线x=1对称,而对称轴是直线x=1,点A的坐标为(3,0),∴点B的坐标是(﹣1,0).故答案为(﹣1,0).本题考查了二次函数的对称性,熟知二次函数的图象关于对称轴对称是解决问题的关键.21、55°或35°.【解析】试题分析:①若E在AD上,如图,∵BE是AD边上的高,∠EBD=20°,∴∠ADB=90°﹣20°=70°,∵AD=BD,∴∠DAB=∠ABD=55°;②若E在AD的延长线上,如图,∵BE是AD边上的高,∠EBD=20°,∴∠EDB=90°﹣20°=70°,∵AD=BD,∴∠DAB=∠ABD=35°.故答案为55°或35°.考点:1.平行四边形的性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度工地食堂用水用电供应合同
- 2024年度新能源发电项目投资与合作合同
- 2024年度园林绿化喷锚注浆劳务分包合同
- 2024年度车位买卖交易合同及过户服务协议
- 2024版旅游服务合同条款
- 智能车库管理系统施工方案
- 2024版设备维护服务合同:针对生产线设备进行定期检修与维护
- 04版供应链管理合同的供应链服务内容与责任分配
- 2024年度租赁变更:办公大楼租赁合同内容变更协议
- 零售行业商品采购管理规范
- 胸腔积液患者病例讨论
- 科研的思路与方法
- 大学生职业生涯规划成长赛道
- 高二上学期日语阅读四篇自测
- 大学生职业生涯规划成长赛道 (第二稿)
- 蓄电池的分类介绍课件
- 人体身体成分健康分析报告
- 人工智能驱动的数字经济发展与应用探索
- 手术室突发事件的紧急处理与应急演练
- 《军事理论》课程标准
- 印刷品类售后服务方案
评论
0/150
提交评论