山西省阳泉市名校2024年九年级数学第一学期开学考试模拟试题【含答案】_第1页
山西省阳泉市名校2024年九年级数学第一学期开学考试模拟试题【含答案】_第2页
山西省阳泉市名校2024年九年级数学第一学期开学考试模拟试题【含答案】_第3页
山西省阳泉市名校2024年九年级数学第一学期开学考试模拟试题【含答案】_第4页
山西省阳泉市名校2024年九年级数学第一学期开学考试模拟试题【含答案】_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共10页山西省阳泉市名校2024年九年级数学第一学期开学考试模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知x=1是一元二次方程x2+bx+1=0的解,则b的值为(A.0 B.1 C.-2 D.22、(4分)如图,l1反映了某公司销售一种医疗器械的销售收入(万元)与销售量(台)之间的关系,l2反映了该公司销售该种医疗器械的销售成本(万元)与销售量(台)之间的关系.当销售收入大于销售成本时,该医疗器械才开始赢利.根据图象,则下列判断中错误的是()A.当销售量为4台时,该公司赢利4万元 B.当销售量多于4台时,该公司才开始赢利C.当销售量为2台时,该公司亏本1万元 D.当销售量为6台时,该公司赢利1万元3、(4分)一个直角三角形的两边长分别为,则第三边长可能是()A. B. C.或2 D.4、(4分)下列定理中,没有逆定理的是()A.对顶角相等 B.同位角相等,两直线平行C.直角三角形的两锐角互余 D.直角三角形两直角边平方和等于斜边的平方5、(4分)如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为()A.9 B.12 C.9 D.186、(4分)如图,点P是正方形内一点,连接并延长,交于点.连接,将绕点顺时针旋转90°至,连结.若,,,则线段的长为()A. B.4 C. D.7、(4分)一个直角三角形两条直角边的长分别为5,12,则其斜边上的高为()A. B.13 C.6 D.258、(4分)在一次英语单词听写比赛中共听写了16个单词,每听写正确1个得1分,最后全体参赛同学的听写成绩统计如下表:成绩(分)1213141516人数(个)13457则听写成绩的众数和中位数分别是().A.15,14 B.15,15C.16,15 D.16,14二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线将图形分成面积相等的两部分,则直线的函数关系式为______________.10、(4分)命题“全等三角形的面积相等”的逆命题是__________11、(4分)关于x的方程有解,则k的范围是______.12、(4分)若代数式在实数范围内有意义,则x的取值范围是_______.13、(4分)分解因式:__________三、解答题(本大题共5个小题,共48分)14、(12分)如图,梯形ABCD中,AB//CD,AD=BC,延长AB到E,使BE=DC,连结AC、CE.求证AC=CE.15、(8分)某学校在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元?(2)为响应“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.并且购进乙种足球的数量不少于甲种足球数量的,学校应如何采购才能使总花费最低?16、(8分)解下列方程:(1);(2).17、(10分)已知:如图,在中,延长到,使得.连结,.(1)求证:;(2)请在所给的图中,用直尺和圆规作点(不同于图中已给的任何点),使以,,,为顶点的四边形是平行四边形(只作一个,保留痕迹,不写作法).18、(10分)某校为了选拔学生参加区里“五好小公民”演讲比赛,对八年级一班、二班提前选好的各10名学生进行预选(满分10分),绘制成如下两幅统计表:表(1):两班成绩序号1号2号3号4号5号6号7号8号9号10号一班(分)588981010855二班(分)1066910457108表(2):两班成绩分析表班级平均分中位数众数方差及格率一班7.6ab3.4430%二班c7.5104.4540%(1)在表(2)中填空,a=________,b=________,c=________.(2)一班、二班都说自己的成绩好,你赞同谁的说法?请给出两条理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)平行四边形ABCD中,若,=_____.20、(4分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见,现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为______.21、(4分)已知菱形ABCD的两条对角线长分别为12和16,则这个菱形ABCD的面积S=_____.22、(4分)如图,将绕点按逆时针方向旋转得到,使点落在上,若,则的大小是______°.23、(4分)若一个多边形的每一个内角都是144°,则这个多边形的是边数为_____.二、解答题(本大题共3个小题,共30分)24、(8分)某地至北京的高铁里程约为600km,甲、乙两人从此地出发,分别乘坐高铁A与高铁B前往北京.已知A车的平均速度比B车的平均速度慢50km/h,A车的行驶时间比B车的行驶时间多20%,B车的行驶的时间为多少小时?25、(10分)如图,在中,点是边上一个动点,过点作直线,设交的平分线于点,交的外角平分线于点.

(1)探究与的数量关系并加以证明;

(2)当点运动到上的什么位置时,四边形是矩形,请说明理由;

(3)在(2)的基础上,满足什么条件时,四边形是正方形?为什么?26、(12分)一家公司准备招聘一名英文翻译,对甲、乙和丙三名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲82867875乙73808582丙81828079(1)如果这家公司按照这三名应试者的平均成绩(百分制)计算,从他们的成绩看,应该录取谁?(2)如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶4∶2∶1的权重确定,计算三名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?(3)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照1∶2∶3∶4的权重确定,计算三名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

根据一元二次方程解的定义,把x=1代入x1+bx+1=0得关于b的一次方程,然后解一次方程即可.【详解】解:把x=1代入x1+bx+1=0得1+b+1=0,解得b=-1.

故选:C.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.2、A【解析】

利用图象交点得出公司盈利以及公司亏损情况.【详解】解:A、当销售量为4台时,该公司赢利0万元,错误;B、当销售量多于4台时,该公司才开始赢利,正确;C、当销售量为2台时,该公司亏本1万元,正确;D、当销售量为6台时,该公司赢利1万元,正确;故选A.此题主要考查了一次函数的应用,熟练利用数形结合得出是解题关键.3、C【解析】

本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边8既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】解:设第三边为x,

①当8是直角边,则62+82=x2解得x=10,

②当8是斜边,则62+x2=82,解得x=2.

∴第三边长为10或2.

故选:C.本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.4、A【解析】

分别写出四个命题的逆命题,逆命题是真命题的就是逆定理,不成立的就是假命题,就不是逆定理.【详解】A对顶角相等的逆命题是:如果两个角相等,那么这两个角是对顶角,逆命题是假命题,故没有逆定理;B同位角相等,两直线平行的逆命题是:两直线平行,同位角相等,是逆定理;C直角三角形两锐角互余的逆命题是:两锐角互余的三角形是直角三角形,是逆定理;D直角三角形两直角边平方和等于斜边的平方的逆定理是:两边的平方和等于第三边的平方的三角形是直角三角形,因此答案选择A.本题考查的知识点是定理与逆定理,如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.5、D【解析】

根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的想知道的∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论【详解】ABCD为平行四边形,所以,AD∥BC,所以,∠AEG=∠EGF,由折叠可知:∠GEF=∠DEF=60°,所以,∠AEG=60°,所以,∠EGF=60°,所以,三有形EGF为等边三角形,因为EF=6,所以,△GEF的周长为18此题考查翻折变换(折叠问题),平行四边形的性质,解题关键在于得出∠GEF=∠DEF=60°6、D【解析】

如图作BH⊥AQ于H.首先证明∠BPP′=90°,再证明△PHB是等腰直角三角形,求出PH、BH、AB,再证明△ABH∽△AQB,可得AB2=AH•AQ,由此即可解决问题。【详解】解:如图作于.∵是等腰直角三角形,,∴,∵,,∴,∴,∵,∴,∴,AH=AP+PH=1+2=3,在中,,∵,,∴,∴,∴,故选:D.本题考查正方形的性质、旋转变换、勾股定理的逆定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形或相似三角形解决问题,属于中考常考题型.7、A【解析】试题分析:∵直角三角形的两条直角边的长分别为5,12,

∴斜边为=13,

∵S△ABC=×5×12=×13h(h为斜边上的高),

∴h=.

故选A.8、C【解析】

根据表格中的数据可知16出现的次数最多,从而可以得到众数,一共20个数据,中位数是第10个和第11个的平均数,本题得以解决.【详解】由表格可得,16出现的次数最多,所以听写成绩的众数是16;一共20个数据,中位数是第10个和第11个的平均数为5,即中位数为5,

故选:C.考查了众数和中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】

设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式.【详解】设直线l和八个正方形的最上面交点为A,过点A作AB⊥OC于点C∴OB=3∵经过原点的直线将图形分成面积相等的两部分∴直线上方面积分是4∴三角形ABO的面积是5∴∴∴直线经过点设直线l为则∴直线的函数关系式为本题考查了一次函数,难点在于利用已知条件中的面积关系,熟练掌握一次函数相关知识点是解题关键.10、如果两个三角形的面积相等,那么是全等三角形【解析】

首先分清题设是:两个三角形全等,结论是:面积相等,把题设与结论互换即可得到逆命题.【详解】命题“全等三角形的面积相等”的逆命题是:如果两个三角形的面积相等,那么是全等三角形.故答案为:如果两个三角形的面积相等,那么是全等三角形本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.11、k≤5【解析】

根据关于x的方程有解,当时是一次方程,方程必有解,时是二元一次函数,则可知△≥0,列出关于k的不等式,求得k的取值范围即可.【详解】解:∵方程有解①当时是一次方程,方程必有解,此时②当时是二元一次函数,此时方程有解∴△=16-4(k-1)≥0

解得:k≤5.综上所述k的范围是k≤5.故答案为:k≤5.本题考查了一元二次方程根的判别式的应用.

总结:一元二次方程根的情况与判别式△的关系:

(1)△>0⇔方程有两个不相等的实数根;

(2)△=0⇔方程有两个相等的实数根;

(3)△<0⇔方程没有实数根.12、【解析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:∵在实数范围内有意义,∴x-1≥2,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2.13、【解析】

提取公因式,即可得解.【详解】故答案为:.此题主要考查对分解因式的理解,熟练掌握,即可解题.三、解答题(本大题共5个小题,共48分)14、证明见解析【解析】本题主要考查了等腰梯形的性质及全等三角形的判定方法.根据等腰梯形的性质利用SAS判定△ADC≌△CBE,从而得到AC=CE证明:在梯形ABCD中,AB∥DC,AD=BC,∴四边形ABCD是等腰梯形,∴∠CDA=∠BCD.又∵DC∥AB,∴∠BCD=∠CBE,∵AD=BC,DC=BE,∴△ADC≌△CBE,故AC=CE.15、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校再次购买1个甲种足球,3个乙种足球,才能使总花费最低.【解析】

(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20),根据购买甲种足球数量是购买乙种足球数量的2倍列出方程解答即可;

(2)设这所学校再次购买a个甲种足球,根据题意列出不等式解答即可.【详解】(1)设购买一个甲种足球需x元,则购买一个乙种足球需(x+20)元,根据题意,可得:=2×,解得:x=50,经检验x=50是原方程的解,答:购买一个甲种足球需50元,购买一个乙种足球需70元;(2)设这所学校再次购买a个甲种足球,(50-a)个乙种足球,根据题意,可得:50-a≥a,解得:a≤,∵a为整数,∴a≤1.设总花费为y元,由题意可得,y=50a+70(50-a)=-20a+2.∵-20<0,∴y随x的增大而减小,∴a取最大值1时,y的值最小,此时50-a=3.答:这所学校再次购买1个甲种足球,3个乙种足球,才能使总花费最低.本题考查的知识点是分式方程的应用和一元一次不等式的应用,解题关键是根据题意列出方程.16、(1)x=5,x=−2;(2)-2【解析】

(1)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)因为2x+6=2(x+3),所以可得方程最简公分母为2(x+3),然后去分母转化为整式方程求解.【详解】(1)x(x−3)=10,整理得:x−3x−10=0,(x−5)(x+2)=0,x−5=0,x+2=0,x=5,x=−2;(2)原方程的两边同时乘以2(x+3),得:4+3(x+3)=7,解这个方程,得x=−2,检验:将x=−2代入2(x+3)时,该式等于2,∴x=−2是原方程的根此题考查解一元二次方程-因式分解法,解分式方程,掌握运算法则是解题关键17、(1)详见解析;(2)详见解析【解析】

(1)由四边形ABCD是平行四边形,得到AB=CD,AB∥CD,易得BE∥CD,由于BE=AB可得BE=CD,推出四边形BECD是平行四边形,再运用平行四边形的性质解答即可;(2)分别以C,E为圆心,以BE,BC的长为半径画弧,两弧交于一点F,则点F即为所求.【详解】(1)证明:∵中,∴,.又,,,四边形是平行四边形,.(2)如图:本题考查了平行四边形的判定和性质,灵活运用平行四边形的判定和性质定理是解题的关键.18、(1)8,8,7.5;(2)一班的成绩更好,理由见解析.【解析】

(1)根据中位数、众数的定义及平均数的计算公式求解即可;(2)一班的成绩更好,从平均数、中位数、方差方面分析即可.【详解】解:(1)在5,5,5,8,8,8,8,9,10,10中,中位数为8;众数为8;二班的平均分=(10+6+6+9+10+4+5+7+10+8)÷10=7.5.(2)一班的成绩更好,理由一:一班的平均分比二班高;理由二:一班成绩的中位数比二班高.(答案不唯一,合理即可)本题考查了中位数、众数、平均数及方差的知识,正确运用相关知识是解决问题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、120°【解析】

根据平行四边形对角相等求解.【详解】平行四边形ABCD中,∠A=∠C,又,∴∠A=120°,故填:120°.此题主要考查平行四边形的性质,解题的关键是熟知平行四边形对角相等.20、1【解析】

先求出100名学生中持“赞成”意见的学生人数所占的比例,再用总人数相乘即可.【详解】解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,∴持“赞成”意见的学生人数=100-30=70名,∴全校持“赞成”意见的学生人数约=2400×70100故答案为:1.本题考查的是用样本估计总体,先根据题意得出100名学生中持赞成”意见的学生人数是解答此题的关键.21、1.【解析】

根据菱形的性质,菱形的面积=对角线乘积的一半.【详解】解:菱形的面积是:.故答案为1.本题考核知识点:菱形面积.解题关键点:记住根据对角线求菱形面积的公式.22、48°【解析】

根据旋转得出AC=DC,求出∠CDA,根据三角形内角和定理求出∠ACD,即可求出答案.【详解】∵将△ABC绕点C按逆时针方向旋转,得到△DCE,点A的对应点D落在AB边上,∴AC=DC,∵∠CAB=66°,∴∠CDA=66°,∴∠ACD=180°-∠A-∠CDA=48°,∴∠BCE=∠ACD=48°,故答案为:48°.本题考查了三角形内角和定理,旋转的性质的应用,能求出∠ACD的度数是解此题的关键.23、1【解析】

先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【详解】180°-144°=36°,360°÷36°=1,∴这个多边形的边数是1,故答案为:1.本题考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.二、解答题(本大题共3个小题,共30分)24、2【解析】

设B车行驶x小时,则A行驶(1+20%)x小时,根据题意即可列出分式方程进行求解.【详解】解:设B车行驶x小时,则A行驶(1+20%)x小时.由题意得解得:x=2经检验:x=2是原方程的解.B车的行驶的时间为2小时.此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列方程.25、(1)OE=OF,理由见解析;(2)当点O运动到AC的中点时,四边形AECF是矩形.理由见解析;(3)当点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,四边形AECF是正方形.理由见解析;【解析】

(1)由平行线的性质和角平分线定义得出∠OEC=∠OCE,∠OFC=∠OCF,根据“等角对等边”得出OE=OC,OF=OC,即可得出结论;

(2)由(1)得出的OE=OC=OF,点O运动到AC的中点时,则由OE=OC=OF=OA,证出四边形AECF是平行四边形,再证出∠ECF=90°即可;

(3)由已知和(2)得到的结论,点O运动到AC的中点时,且△ABC满足∠ACB为直角的直角三角形时,则推出四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论