版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳市康桥书院2025届数学高二上期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在区间上的最小值是()A. B.C. D.2.数列满足且,则的值是()A.1 B.4C.-3 D.63.在各项都为正数的数列中,首项为数列的前项和,且,则()A. B.C. D.4.在等差数列中,为其前项和,若.则()A. B.C. D.5.已知等比数列的前项和为,公比为,则()A. B.C. D.6.若,,则有()A. B.C. D.7.以下说法:①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;②设有一个回归方程,变量增加1个单位时,平均增加5个单位③线性回归方程必过④设具有相关关系的两个变量的相关系数为,那么越接近于0,之间的线性相关程度越高;⑤在一个列联表中,由计算得的值,那么的值越大,判断两个变量间有关联的把握就越大。其中错误的个数是()A.0 B.1C.2 D.38.若数列为等差数列,数列为等比数列,则下列不等式一定成立的是()A. B.C. D.9.如图,过抛物线的焦点的直线依次交抛物线及准线于点,若且,则抛物线的方程为()A.B.C.D.10.双曲线的左、右焦点分别为F1,F2,点P在双曲线上,下列结论不正确的是()A.该双曲线的离心率为B.该双曲线的渐近线方程为C.点P到两渐近线的距离的乘积为D.若PF1⊥PF2,则△PF1F2的面积为3211.若复数满足,则复平面内表示的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限12.某学校要从5名男教师和3名女教师中随机选出3人去支教,则抽取的3人中,女教师最多为1人的选法种数为()A.10 B.30C.40 D.46二、填空题:本题共4小题,每小题5分,共20分。13.与同一条直线都相交的两条直线的位置关系是________14.曲线在处的切线方程是________.15.过椭圆的一个焦点的弦与另一个焦点围成的的周长是______16.如图,椭圆的左、右焦点分别为,过椭圆上的点作轴的垂线,垂足为,若四边形为菱形,则该椭圆的离心率为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系中,点,,(1)求直线BC的方程;(2)记的外接圆为圆M,若直线OC被圆M截得的弦长为4,求点C的坐标18.(12分)数列的前n项和为,(1)求数列的通项公式;(2)令,求数列的前n项和19.(12分)在平面直角坐标系xOy中,已知点、,点M满足,记点M的轨迹为C(1)求C的方程;(2)若直线l过圆圆心D且与圆交于A,B两点,点P为C上一个动点,求的最小值20.(12分)已知抛物线C:,直线l经过点,且与抛物线C交于M,N两点,其中.(1)若,且,求点M的坐标;(2)是否存在正数m,使得以MN为直径的圆经过坐标原点O,若存在,请求出正数m,若不存在,请说明理由.21.(12分)已知椭圆上的点到椭圆焦点的最大距离为3,最小距离为1(1)求椭圆的标准方程;(2)已知,分别是椭圆的左右顶点,是椭圆上异于,的任意一点,直线,分别交轴于点,,求的值22.(10分)如图,在长方体中,,,是棱的中点(1)求证:;(2)求平面与平面夹角的余弦值;(3)在棱上是否存在一点,使得与平面所成角的正弦值为,若存在,求出的长;若不存在,请说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出导函数,确定函数的单调性,得极值,并求出端点处函数值比较后可得最小值【详解】解:因为,于是函数在上单调递增,在上单调递减,,,得函数在区间上的最小值是故选:B2、A【解析】根据题意,由于,可知数列是公差为-3的等差数列,则可知d=-3,由于=,故选A3、C【解析】当时,,故可以得到,因为,进而得到,所以是等比数列,进而求出【详解】由,得,得,又数列各项均为正数,且,∴,∴,即∴数列是首项,公比的等比数列,其前项和,得,故选:C.4、C【解析】利用等差数列的性质和求和公式可求得的值.【详解】由等差数列的性质和求和公式可得.故选:C.5、D【解析】利用等比数列的求和公式可求得的值.【详解】由等比数列的求和公式可得,解得.故选:D.6、D【解析】对待比较的代数式进行作差,利用不等式基本性质,即可判断大小.【详解】因为,又,,故,则,即;因为,又,,故,则;综上所述:.故选:D.7、C【详解】方差反映一组数据的波动大小,将一组数据中的每个数据都加上或减去同一个常数后,方差不变,故①正确;一个回归方程,变量增加1个单位时,平均减少5个单位,故②不正确;线性回归方程必过样本中心点,故③正确;根据线性回归分析中相关系数的定义:在线性回归分析中,相关系数为r,越接近于1,相关程度越大,故④不正确;对于观察值来说,越大,“x与y有关系”的可信程度越大,故⑤正确.故选:C【点睛】本题主要考查用样本估计总体、线性回归方程、独立性检验的基本思想.8、D【解析】对选项A,令即可检验;对选项B,令即可检验;对选项C,令即可检验;对选项D,设出等差数列的首项和公比,然后作差即可.【详解】若,则可得:,故选项A错误;若,则可得:,故选项B错误;若,则可得:,故选项C错误;不妨设的首项为,公差为,则有:则有:,故选项D正确故选:D9、D【解析】如图根据抛物线定义可知,进而推断出的值,在直角三角形中求得,进而根据,利用比例线段的性质可求得,则抛物线方程可得.【详解】如图分别过点,作准线的垂线,分别交准线于点,设,则由已知得:,由定义得:,故在直角三角形中,,,,从而得,,求得,所以抛物线的方程为故选:D10、D【解析】根据双曲线的离心率、渐近线、点到直线距离公式、三角形的面积等知识来确定正确答案.【详解】由题意可知,a=3,b=4,c=5,,故离心率e,故A正确;由双曲线的性质可知,双曲线线的渐近线方程为y=±x,故B正确;设P(x,y),则P到两渐近线的距离之积为,故C正确;若PF1⊥PF2,则△PF1F2是直角三角形,由勾股定理得,由双曲线的定义可得|PF1|﹣|PF2|=2a=6(不妨取P在第一象限),∴2|PF1||PF2|=100﹣2|PF1||PF2|,解得|PF1||PF2|=32,可得,故D错误.故选:D11、A【解析】根据复数的运算法则,求得,结合复数的几何意义,即可求解.【详解】由题意,复数满足,可得,所以复数在复平面内对应的点的坐标为,位于第一象限.故选:A.12、C【解析】可分为女教师0人,男教师3人和女教师1人,男教师2人两种情况,用组合数表示计算即得解【详解】女教师最多为1人即女教师为0人或者1人若女教师为0人,则男教师有3人,有种选择;若女教师为1人,则男教师2人,有种选择;故女教师最多为1人的选法种数为种故选:C二、填空题:本题共4小题,每小题5分,共20分。13、平行,相交或者异面【解析】由空间中两直线的位置关系求解即可【详解】由题意与同一条直线都相交的两条直线的位置关系可能是:平行,相交或者异面,故答案为:平行,相交或者异面,14、【解析】求出函数的导函数,把代入即可得到切线的斜率,然后根据和斜率写出切线的方程即可.【详解】解:由函数知,把代入得到切线的斜率则切线方程为:,即.故答案为:【点睛】本题考查导数的几何意义,属于基础题15、【解析】求得,利用椭圆的定义可得出的周长.【详解】在椭圆中,,由题意可知,的周长为.故答案为:.16、【解析】根据题意可得,利用推出,进而得出结果.【详解】由题意知,,将代入方程中,得,因为,所以,整理,得,又,所以,由,解得.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)延长CB交x轴于点N,根据给定条件求出即可计算作答.(2)利用待定系数法求出圆M的方程,再由给定弦长确定C点位置,推理计算得解.【小问1详解】延长CB交x轴于点N,如图,因,则,又,则有,又,于是得,则直线BC的倾斜角为120°,直线BC的斜率,因此,,即所以直线BC的方程为.【小问2详解】依题意,设圆M的方程为,由(1)得:,解得,于是得圆M的方程为,即,圆心,半径,因直线OC被圆M所截的弦长为4,则直线OC过圆心,其方程为,由解得,即,所以点C的坐标是.18、(1);(2).【解析】(1)根据给定条件结合“当时,”计算作答.(2)由(1)求出,利用裂项相消法计算得解.【小问1详解】数列的前n项和为,,当时,,当时,,满足上式,则,所以数列的通项公式是【小问2详解】由(1)知,,所以,所以数列的前n项和19、(1)(2)23【解析】(1)根据双曲线的定义判断轨迹,直接写出轨迹方程即可;(2)设,利用向量坐标运算计算,再由二次函数求最值即可.【小问1详解】由,则轨迹C是以点、为左、右焦点的双曲线的右支,设轨迹C的方程为,则,可得,,所以C的方程为;【小问2详解】设,则,且,圆心,则因为,则当时,取最小值23.20、(1)或(2)存在,【解析】(1)确定点为抛物线的焦点,则根据抛物线的焦半径公式,结合抛物线方程,求得答案;(2)假设存在正数m,使得以MN为直径的圆经过坐标原点O,可推得,由此可设直线方程,联立抛物线方程,利用根与系数的关系,代入到中,可得结论.【小问1详解】依题意得为的焦点,故,解得,故,则∴点的坐标或;【小问2详解】假设存在正数,使得以为直径的圆经过坐标原点,∴,设直线:,,,由,得,则,,∵,,∴,解得或(舍去)所以存在正数,使得以为直径的圆经过坐标原点.21、(1);(2)-1.【解析】(1)根据椭圆的性质进行求解即可;(2)根据直线的方程,结合平面向量数量积的坐标表示公式进行求解即可.【小问1详解】由题意得,,,所以,椭圆.【小问2详解】由题意可知,,设,则,直线,直线分别令得,,,.【点睛】关键点睛:运用平面向量数量积的坐标表示公式进行求解是解题的关键.22、(1)证明见解析(2)(3)存点,【解析】(1)先证明平面,由平面,可证明结论
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年劳动合同范本版
- 《何謂物流管理》课件
- 医疗康复器械
- 2024年度印刷设计与制作服务合同3篇
- 反腐课件教学课件
- 《外事工作概述》课件
- 生产加工合同
- 移动式脚手架安全培训
- 建筑工程砖材料采购合同版04
- 护士护理进修汇报护理
- 中华国学智慧树知到期末考试答案2024年
- MOOC 国际交流英语-哈尔滨工业大学 中国大学慕课答案
- 中外政治思想史-形成性测试四-国开(HB)-参考资料
- 沟通技巧与商务礼仪
- 18 奇妙的建筑 (教案)岭南版美术三年级上册
- 小学三通两平台汇报
- 防火巡查记录表防火检查记录表
- “校园周边环境安全隐患”自检自查(排查)记录表
- 高二上学期日语阅读四篇自测
- 大学生职业生涯规划成长赛道 (第二稿)
- JB T 6464-2006额定电压1kV(Um=1.2kV)到35kV行业标准
评论
0/150
提交评论