版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广东省惠州市惠东中学数学高三第一学期期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列中,,,则数列的前10项和()A.100 B.210 C.380 D.4002.如图所示点是抛物线的焦点,点、分别在抛物线及圆的实线部分上运动,且总是平行于轴,则的周长的取值范围是()A. B. C. D.3.设,为非零向量,则“存在正数,使得”是“”的()A.既不充分也不必要条件 B.必要不充分条件C.充分必要条件 D.充分不必要条件4.若复数满足,则对应的点位于复平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A. B. C. D.6.设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为()A. B.2 C. D.7.某四棱锥的三视图如图所示,该几何体的体积是()A.8 B. C.4 D.8.已知实数满足约束条件,则的最小值为()A.-5 B.2 C.7 D.119.若不等式对于一切恒成立,则的最小值是()A.0 B. C. D.10.已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,,且,则该双曲线的渐近线方程为()A. B. C. D.11.已知展开式的二项式系数和与展开式中常数项相等,则项系数为()A.10 B.32 C.40 D.8012.在三棱锥中,,且分别是棱,的中点,下面四个结论:①;②平面;③三棱锥的体积的最大值为;④与一定不垂直.其中所有正确命题的序号是()A.①②③ B.②③④ C.①④ D.①②④二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则曲线在处的切线斜率为________.14.已知实数a,b,c满足,则的最小值是______.15.已知函数f(x)=axlnx﹣bx(a,b∈R)在点(e,f(e))处的切线方程为y=3x﹣e,则a+b=_____.16.数据的标准差为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知四棱锥的底面是等腰梯形,,,,,为等边三角形,且点P在底面上的射影为的中点G,点E在线段上,且.(1)求证:平面.(2)求二面角的余弦值.18.(12分)在平面直角坐标系xOy中,抛物线C:,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为().(1)求抛物线C的极坐标方程;(2)若抛物线C与直线l交于A,B两点,求的值.19.(12分)已知各项均不相等的等差数列的前项和为,且成等比数列.(1)求数列的通项公式;(2)求数列的前项和.20.(12分)已知函数,其中.(1)函数在处的切线与直线垂直,求实数的值;(2)若函数在定义域上有两个极值点,且.①求实数的取值范围;②求证:.21.(12分)在直角坐标平面中,已知的顶点,,为平面内的动点,且.(1)求动点的轨迹的方程;(2)设过点且不垂直于轴的直线与交于,两点,点关于轴的对称点为,证明:直线过轴上的定点.22.(10分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线和直线的极坐标方程;(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
设公差为,由已知可得,进而求出的通项公式,即可求解.【详解】设公差为,,,,.故选:B.【点睛】本题考查等差数列的基本量计算以及前项和,属于基础题.2、B【解析】
根据抛物线方程求得焦点坐标和准线方程,结合定义表示出;根据抛物线与圆的位置关系和特点,求得点横坐标的取值范围,即可由的周长求得其范围.【详解】抛物线,则焦点,准线方程为,根据抛物线定义可得,圆,圆心为,半径为,点、分别在抛物线及圆的实线部分上运动,解得交点横坐标为2.点、分别在两个曲线上,总是平行于轴,因而两点不能重合,不能在轴上,则由圆心和半径可知,则的周长为,所以,故选:B.【点睛】本题考查了抛物线定义、方程及几何性质的简单应用,圆的几何性质应用,属于中档题.3、D【解析】
充分性中,由向量数乘的几何意义得,再由数量积运算即可说明成立;必要性中,由数量积运算可得,不一定有正数,使得,所以不成立,即可得答案.【详解】充分性:若存在正数,使得,则,,得证;必要性:若,则,不一定有正数,使得,故不成立;所以是充分不必要条件故选:D【点睛】本题考查平面向量数量积的运算,向量数乘的几何意义,还考查了充分必要条件的判定,属于简单题.4、D【解析】
利用复数模的计算、复数的除法化简复数,再根据复数的几何意义,即可得答案;【详解】,对应的点,对应的点位于复平面的第四象限.故选:D.【点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.5、A【解析】
分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题.、、都是假命题.故选:A【点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.6、A【解析】
由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率.【详解】由题意∵,∴由双曲线定义得,从而得,,在中,由余弦定理得,化简得.故选:A.【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式.7、D【解析】
根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积.【详解】根据三视图知,该几何体是侧棱底面的四棱锥,如图所示:结合图中数据知,该四棱锥底面为对角线为2的正方形,高为PA=2,∴四棱锥的体积为.故选:D.【点睛】本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.属于中等题.8、A【解析】
根据约束条件画出可行域,再将目标函数化成斜截式,找到截距的最小值.【详解】由约束条件,画出可行域如图变为为斜率为-3的一簇平行线,为在轴的截距,最小的时候为过点的时候,解得所以,此时故选A项【点睛】本题考查线性规划求一次相加的目标函数,属于常规题型,是简单题.9、C【解析】
试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论.解:不等式x2+ax+1≥0对一切x∈(0,]成立,等价于a≥-x-对于一切成立,∵y=-x-在区间上是增函数∴∴a≥-∴a的最小值为-故答案为C.考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题10、D【解析】
根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.【详解】如图所示:因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以渐近线方程为.故选:D.【点睛】本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.11、D【解析】
根据二项式定理通项公式可得常数项,然后二项式系数和,可得,最后依据,可得结果.【详解】由题可知:当时,常数项为又展开式的二项式系数和为由所以当时,所以项系数为故选:D【点睛】本题考查二项式定理通项公式,熟悉公式,细心计算,属基础题.12、D【解析】
①通过证明平面,证得;②通过证明,证得平面;③求得三棱锥体积的最大值,由此判断③的正确性;④利用反证法证得与一定不垂直.【详解】设的中点为,连接,则,,又,所以平面,所以,故①正确;因为,所以平面,故②正确;当平面与平面垂直时,最大,最大值为,故③错误;若与垂直,又因为,所以平面,所以,又,所以平面,所以,因为,所以显然与不可能垂直,故④正确.故选:D【点睛】本小题主要考查空间线线垂直、线面平行、几何体体积有关命题真假性的判断,考查空间想象能力和逻辑推理能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
求导后代入可构造方程求得,即为所求斜率.【详解】,,解得:,即在处的切线斜率为.故答案为:.【点睛】本题考查切线斜率的求解问题,考查导数的几何意义,属于基础题.14、【解析】
先分离出,应用基本不等式转化为关于c的二次函数,进而求出最小值.【详解】解:若取最小值,则异号,,根据题意得:,又由,即有,则,即的最小值为,故答案为:【点睛】本题考查了基本不等式以及二次函数配方求最值,属于中档题.15、0【解析】
由题意,列方程组可求,即求.【详解】∵在点处的切线方程为,,代入得①.又②.联立①②解得:..故答案为:0.【点睛】本题考查导数的几何意义,属于基础题.16、【解析】
先计算平均数再求解方差与标准差即可.【详解】解:样本的平均数,这组数据的方差是标准差,故答案为:【点睛】本题主要考查了标准差的计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】
(1)由等腰梯形的性质可证得,由射影可得平面,进而求证;(2)取的中点F,连接,以G为原点,所在直线为x轴,所在直线为y轴,所在直线为z轴,建立空间直角坐标系,分别求得平面与平面的法向量,再利用数量积求解即可.【详解】(1)在等腰梯形中,点E在线段上,且,点E为上靠近C点的四等分点,,,,,点P在底面上的射影为的中点G,连接,平面,平面,.又,平面,平面,平面.(2)取的中点F,连接,以G为原点,所在直线为x轴,所在直线为y轴,所在直线为z轴,建立空间直角坐标系,如图所示,由(1)易知,,,又,,,为等边三角形,,则,,,,,,,,,设平面的法向量为,则,即,令,则,,,设平面的法向量为,则,即,令,则,,,设平面与平面的夹角为θ,则二面角的余弦值为.【点睛】本题考查线面垂直的证明,考查空间向量法求二面角,考查运算能力与空间想象能力.18、(1)(2)【解析】
(1)利用极坐标和直角坐标的互化公式,,即可求得结果.(2)由的几何意义得,.将代入抛物线C的方程,利用韦达定理,,即可求得结果.【详解】(1)因为,,代入得,所以抛物线C的极坐标方程为.(2)将代入抛物线C的方程得,所以,,所以,由的几何意义得,.【点睛】本题考查直角坐标和极坐标的转化,考查极坐标方程的综合应用,考查了学生综合分析,转化与划归,数学运算的能力,难度一般.19、(1);(2).【解析】试题分析:(1)设公差为,列出关于的方程组,求解的值,即可得到数列的通项公式;(2)由(1)可得,即可利用裂项相消求解数列的和.试题解析:(1)设公差为.由已知得,解得或(舍去),所以,故.(2),考点:等差数列的通项公式;数列的求和.20、(1);(2)①;②详见解析.【解析】
(1)由函数在处的切线与直线垂直,即可得,对其求导并表示,代入上述方程即可解得答案;(2)①已知要求等价于在上有两个根,且,即在上有两个不相等的根,由二次函数的图象与性质构建不等式组,解得答案,最后分析此时单调性推及极值说明即可;②由①可知,是方程的两个不等的实根,由韦达定理可表达根与系数的关系,进而用含的式子表示,令,对求导分析单调性,即可知道存在常数使在上单调递减,在上单调递增,进而求最值证明不等式成立.【详解】解:(1)依题意,,,故,所以,据题意可知,,解得.所以实数的值为.(2)①因为函数在定义域上有两个极值点,且,所以在上有两个根,且,即在上有两个不相等的根.所以解得.当时,若或,,,函数在和上单调递增;若,,,函数在上单调递减,故函数在上有两个极值点,且.所以,实数的取值范围是.②由①可知,是方程的两个不等的实根,所以其中.故,令,其中.故,令,,在上单调递增.由于,,所以存在常数,使得,即,,且当时,,在上单调递减;当时,,在上单调递增,所以当时,,又,,所以,即,故得证.【点睛】本题考查导数的几何意义、两直线的位置关系、由极值点个数求参数范围问题,还考查了利用导数证明不等式成立,属于难题.21、(1)();(2)证明见解析.【解析】
(1)设点,分别用表示、表示和余弦定理表示,将表示为、的方程,再化简即可;(2)设直线方程代入的轨迹方程,得,设点,,,表示出直线,取,得,即可证明直线过轴上的定点.【详解】(1)设,由已知,∴,∴(),化简得点的轨迹的方程为:();(2)由(1)知,过点的直线的斜率为0时与无交点,不合题意故可设直线的方程为:(),代入的方程得:.设,,则,,.∴直线:.令,得.直线过轴上的定点.【点睛】本题主要考查轨迹方程的求法、余弦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中英语 名词性从句语法 练习 答 新人教版必修
- 第2章 基本数据类型与表达式课件
- 2024-2025学年专题11.4 机械能及其转化-八年级物理人教版(下册)含答案
- 创业计划书课件
- 2024届山西省太原市四十八中高三第二次诊断性考试数学试题(2020眉山二诊)
- 经典版脑筋急转弯及答案
- 5年中考3年模拟试卷初中生物八年级下册第二节基因在亲子代间的传递
- 高考语文作文主题讲解之 网络利弊
- 高低压供配电设备检查和检修保养合同3篇
- 苏少版小学音乐一年级下册教案 全册
- 北京某办公楼装修改造施工组织设计方案
- 《8的乘法口诀》(教案)-2024-2025学年人教版数学二年级上册
- 2024年首届全国标准化知识竞赛考试题库-上(单选题部分)
- 亚临界循环流化床锅炉深度调峰运行技术导则
- 新苏教版一年级上册数学全册课件(2024年新版教材)
- 2024年湖北武汉市洪山区面向社会招聘社区干事235人历年高频500题难、易错点模拟试题附带答案详解
- 中国药物性肝损伤基层诊疗与管理指南(2024年)解读 2
- 超市经营服务方案投标方案(技术标)
- 2024年重庆新课标高考生物试卷(原卷版)
- 第二章中国的自然环境单元复习课件八年级地理上学期人教版
- Unit 2 Different familiesPart B How are families different(教学设计)-2024-2025学年人教PEP版英语三年级上册
评论
0/150
提交评论